

Data	Science	from	Scratch
	

The	#1	Data	Science	Guide	for	Everything
A	Data	Scientist	Needs	to	Know:	Python,
Linear	Algebra,	Statistics,	Coding,
Applications,	Neural	Networks,	and

Decision	Trees
	
	
	
	

Steven	Cooper
	

	
	
	

	

Table	of	Contents
	
Preface
Introduction
Data	Science	and	its	Importance
What	is	it	Exactly?
Why	It	Matters

What	You	Need
The	Advantages	to	Data	Science
Data	Science	and	Big	Data
Key	Difference	Between	Data	Science	and	Big	Data

Data	Scientists
The	Process	of	Data	Science
Responsibilities	of	a	Data	Scientist
Qualifications	of	Data	Scientists
Would	You	Be	a	Good	Data	Scientist?

The	Importance	of	Hacking
The	Importance	of	Coding
Writing	Production-Level	Code
Python
SQL
R
SAS
Java
Scala
Julia

How	to	Work	with	Data
Data	Cleaning	and	Munging
Data	Manipulation

Data	Rescaling
Python
Installing	Python
Python	Libraries	and	Data	Structures
Conditional	and	Iteration	Constructs
Python	Libraries
Exploratory	Analysis	with	Pandas
Creating	a	Predictive	Model

Machine	Learning	and	Analytics
Linear	Algebra
Vectors
Matrices

Statistics
Discrete	Vs.	Continuous
Statistical	Distributions
PDFs	and	CDFs
Testing	Data	Science	Models	and	Accuracy	Analysis
Some	Algorithms	and	Theorems

Decision	Trees
Neural	Networks
Scalable	Data	Processing
Batch	Processing	Systems
Apache	Hadoop
Stream	Processing	Systems
Apache	Storm
Apache	Samza
Hybrid	Processing	Systems
Apache	Spark
Apache	Flink

Data	Science	Applications

Conclusion
About	the	author
References

Copyright	2018	©	Steven	Cooper
All	rights	reserved.

No	part	of	this	guide	may	be	reproduced	in	any	form	without	permission	in
writing	from	the	publisher	except	in	the	case	of	review.

Legal	&	Disclaimer
The	following	document	is	reproduced	below	with	the	goal	of	providing
information	that	is	as	accurate	and	reliable	as	possible.	Regardless,	purchasing
this	eBook	can	be	seen	as	consent	to	the	fact	that	both	the	publisher	and	the
author	of	this	book	are	in	no	way	experts	on	the	topics	discussed	within	and	that
any	recommendations	or	suggestions	that	are	made	herein	are	for	entertainment
purposes	only.	Professionals	should	be	consulted	as	needed	prior	to	undertaking
any	of	the	action	endorsed	herein.
This	declaration	is	deemed	fair	and	valid	by	both	the	American	Bar	Association
and	the	Committee	of	Publishers	Association	and	is	legally	binding	throughout
the	United	States.
Furthermore,	the	transmission,	duplication	or	reproduction	of	any	of	the
following	work	including	specific	information	will	be	considered	an	illegal	act
irrespective	of	if	it	is	done	electronically	or	in	print.	This	extends	to	creating	a
secondary	or	tertiary	copy	of	the	work	or	a	recorded	copy	and	is	only	allowed
with	an	express	written	consent	from	the	Publisher.	All	additional	right	reserved.
The	information	in	the	following	pages	is	broadly	considered	to	be	a	truthful	and
accurate	account	of	facts,	and	as	such	any	inattention,	use	or	misuse	of	the
information	in	question	by	the	reader	will	render	any	resulting	actions	solely
under	their	purview.	There	are	no	scenarios	in	which	the	publisher	or	the	original
author	of	this	work	can	be	in	any	fashion	deemed	liable	for	any	hardship	or
damages	that	may	befall	them	after	undertaking	information	described	herein.
Additionally,	the	information	in	the	following	pages	is	intended	only	for
informational	purposes	and	should	thus	be	thought	of	as	universal.	As	befitting
its	nature,	it	is	presented	without	assurance	regarding	its	prolonged	validity	or

interim	quality.	Trademarks	that	are	mentioned	are	done	without	written	consent
and	can	in	no	way	be	considered	an	endorsement	from	the	trademark	holder.

Preface
The	main	goal	of	this	book	is	to	help	people	take	the	best	actionable	steps
possible	towards	a	career	in	data	science.	The	need	for	data	scientists	is	growing
exponentially	as	the	internet,	and	online	services	continue	to	expand.

Book	Objectives
This	book	will	help	you:

	Know	more	about	the	fundamental	principles	of	data	science	and	what	you
need	to	become	a	skilled	data	scientist.

	Have	an	elementary	grasp	of	data	science	concepts	and	tools	that	will	make
this	work	easier	to	do.

	Have	achieved	a	technical	background	in	data	science	and	appreciate	its
power.

Target	Users
The	book	is	designed	for	a	variety	of	target	audiences.	The	most	suitable	users
would	include:

Newbies	in	computer	science	techniques
Professionals	in	software	applications	development	and	social
sciences
Professors,	lecturers	or	tutors	who	are	looking	to	find	better	ways	to
explain	the	content	to	their	students	in	the	simplest	and	easiest	way
Students	and	academicians,	especially	those	focusing	on	data	science
and	software	development

Is	this	book	for	me?
This	book	is	for	those	who	are	interested	in	data	science.	There	are	a	lot	of	skills
that	a	data	scientist	needs,	such	as	coding,	intellectual	mindset,	eagerness	to
make	new	discoveries,	and	much	more.
It’s	important	that	you	are	interested	in	this	because	you	are	obsessed	with	this
kind	of	work.	Your	driving	force	should	not	be	money.	If	it	is,	then	this	book	is
not	for	you.

	

Introduction
Data	is	all	around	us,	in	everything	that	we	do.	Data	science	is	the	thing	that
makes	human	beings	what	they	are	today.	I’m	not	talking	about	the	computer-
driven	data	science	that	this	book	is	going	to	introduce	you	to,	but	our	brain’s
ability	to	see	different	connections,	learn	from	previous	experiences	and	come	to
conclusions	from	facts.	This	is	truer	for	humans	than	any	other	species	that	have
lived	on	the	planet.	We	humans	depend	on	our	brains	to	survive.	Humans	have
used	all	of	these	features	to	earn	out	spot	in	nature.	This	strategy	has	worked	for
all	of	us	for	centuries,	and	I	doubt	we	will	be	changing	anything	any	time	soon.
But	the	brain	is	only	able	to	take	us	so	far	when	we	are	faced	with	raw
computing.	The	humans	can’t	keep	up	with	all	of	the	data	that	we	are	able	to
capture.	Therefore,	we	end	up	turning	to	machines	to	do	some	of	the	work:	to
notice	the	patterns,	come	up	with	connections,	and	to	give	the	answers	to	many
different	questions.
Our	constant	quest	for	knowledge	is	ingrained	in	our	genes.	Using	computers	to
do	some	of	the	work	for	us	is	not,	but	it	is	where	we	are	destined	to	go.
Welcome	to	the	amazing	world	of	data	science.	While	you	were	looking	over	the
table	of	contents,	you	may	have	noticed	the	wide	variety	of	topics	that	is	going
to	be	covered	in	this	book.	The	goal	for	Data	Science	from	Scratch	is	to	give	you
enough	information	about	every	little	section	of	data	science	to	help	you	get
started.	Data	science	it	a	big	field,	so	big	that	it	would	take	thousands	of	pages	to
give	you	every	bit	of	information	that	makes	up	data	science.
In	each	chapter,	we	will	cover	a	different	aspect	of	data	science	that	is
interesting.
I	sincerely	hope	that	the	information	in	this	book	will	act	as	a	doorway	for	you
into	the	amazing	world	of	data	science.

Roadmap
Chapter	one	will	give	you	a	basic	rundown	of	what	data	science	is.	It	will	go	into
the	importance,	the	history,	and	the	reasons	data	science	matters	so	much.

Chapter	two	will	go	into	everything	that	you	need	for	data	science.	This	will
include	the	work	ethics	that	are	needed	to	make	sure	you	are	successful.
Chapter	three	will	cover	the	advantages	of	data	science.	You	will	see	the	reason
why	so	many	people	love	data	science.
Chapter	four	will	cover	how	data	science	differs	from	big	data,	and	how	the	two
work	together.
Chapter	five	will	go	into	what	a	data	scientist	is	and	what	they	do.	It	will	also
cover	the	skills	that	a	person	needs	to	be	a	good	data	scientist.	It’s	important	for
a	data	scientist	to	be	inquisitive,	ask	questions,	and	make	new	discoveries.
Chapter	six	will	go	into	the	reasons	why	a	data	scientist	should	be	familiar	with
hacking.
Chapter	seven	will	cover	the	why	data	scientists	need	to	know	how	to	code.	You
will	also	learn	about	the	most	common	programming	languages	that	data
scientists	use.
Chapter	eight	will	talk	about	how	a	data	scientist	works	with	data,	such	as
munging,	cleaning,	manipulating,	and	rescaling.
Chapter	nine	will	go	in	depth	about	why	using	Python	programming	language	is
so	important	for	a	data	scientist.
Chapter	ten	will	look	at	the	differences	and	similarities	between	data	science,
analytics,	and	machine	learning.
Chapter	eleven	will	teach	you	how	to	use	linear	algebra	for	data	science.
Chapter	twelve	will	go	into	the	importance	and	use	of	statistics	for	data	science.
Chapter	thirteen	will	explain	what	decisions	trees	are	and	how	to	use	them.
Chapter	fourteen	will	explain	what	neural	networks	are	and	they	way	they	are
used.
Chapter	fifteen	will	go	into	the	different	scalable	data	processing	frameworks
and	paradigms,	such	as	hadoop.
Chapter	sixteen	will	cover	all	the	applications	of	data	science,	such	as	process
management,	marketing,	and	supply	chain	management.

Code
Besides	the	sections	in	chapter	seven	where	we	will	look	at	a	few	other
programming	languages,	all	the	rest	of	code	will	be	written	in	Python	script.
Python	has	been	developed	and	has	now	become	a	very	well	respected	and
widely	used	language	for	the	data	scientists.	So	much	so	that	it	is	pretty	much
the	only	language	that	data	scientists	use.
Whenever	code	appears	in	this	book,	it	will	be	written	in	italic	and	will	start	and
end	with	quotes.	The	quotes	at	the	beginning	and	end	should	not	be	used	when
you	type	your	own	code,	only	use	the	italicized	code.	All	of	the	codings	will	be
explained	so	that	you	aren’t	confused	about	what	it	is	supposed	to	do	or	how	it
should	be	used.
As	you	dive	deeper	into	data	science	you	will	find	that	there	are	lots	of	libraries,
toolkits,	modules,	and	frameworks	that	efficiently	use	some	of	the	most
common,	and	least	common,	data	science	techniques	and	algorithms.	If	you	do
end	up	becoming	a	data	scientist,	you	will	more	than	likely	become	intimately
connected	to	NumPy,	with	pandas,	with	sci-kit-learn,	and	with	many	other
libraries.	These	are	all	great	tools	for	data	science,	but	they	are	also	ways	for
people	who	know	nothing	about	data	science	to	get	started.
This	book	approaches	the	world	of	data	science	from	scratch.	This	means	that
we	will	be	starting	on	the	ground	floor	and	working	our	way	up	to	a	better
understanding	of	data	science	so	that	you	understand	all	of	its	many	aspects.
It’s	now	time	to	get	started	on	that	journey.	Make	sure	you	are	ready.	It	may	even
help	to	read	the	book	through	once,	and	then	read	it	through	again	while	working
along	with	it.	This	will	ensure	that	you	fully	understand	what	you’re	doing,	and
not	just	blindly	following	along.

Data	Science	and	its	Importance
“Information	is	the	oil	of	the	21st	century,	and	analytics	is	the	combustion
engine.”	–	Peter	Sondergaard,	SVP,	Garner	Research

An	interdisciplinary	field,	data	science	uses	scientific	systems,	algorithms,
processes,	and	other	methods	to	gain	insight	and	knowledge	from	data	in
different	forms,	both	unstructured	and	structured.	It	is	a	lot	like	data	mining.
The	concept	of	data	science	is	to	help	unify	statistics,	machine	learning,	data
analysis,	and	other	related	methods.	That	way	people	will	better	understand	and
analyze	information	with	data.	It	uses	different	theories	and	techniques	that	are
drawn	from	different	fields	within	the	context	of	computer	science,	information
science,	statistics,	and	mathematics.
Jim	Gray,	a	Turing	award	winner,	saw	data	science	as	a	“fourth	paradigm”	of
science:	computational,	theoretical,	empirical,	and	driven	by	data.	He	also
asserted	that	all	parts	of	science	are	changing	due	to	the	impact	of	data	deluge

and	information	technology.
Data	science	became	a	buzzword	when	the	Harvard	Business	Review	called	it

“The	Sexiest	Job	of	the	21st	Century,”	it	became	a	buzzword.	Because	of	this,	it
tends	to	be	used	to	describe	predictive	modeling,	business	intelligence,	business
analytics,	or	other	uses	of	data,	or	to	make	statistics	sound	more	interesting.
We’re	going	to	make	sure	that	you	learn	what	real	data	science	is,	so	that	you
can	reap	the	real	benefits.
Data	science	has	popped	in	lots	of	different	contexts	over	the	past	30	years	or	so,
but	it	didn’t	become	established	until	quite	recently.	Peter	Naur	used	it	to
describe	computer	science	in	the	‘60s.	Naur	later	started	using	the	term	datalogy.
Naur	then	published	the	Concise	Survey	of	Computer	Methods	in	1974.	It
referenced	data	science	freely	in	the	way	it	looked	at	the	common	data
processing	methods	that	were	used	in	different	ways.
The	IFCS	met	in	Kobe,	Japan	for	a	biennial	conference	in	1996,	and	it	was	here
that	the	phrase	“data	science”	was	first	included	in	the	conference	title.	This	was
after	Chikio	Hayashi	introduced	the	term	at	a	roundtable	discussion.
When	he	was	given	the	H.C.	Carver	Professorship	at	UM,	C.F.	Jeff	Wu,	in
November	1997,	called	his	inaugural	lecture	“Statistics	=	Data	Science?”	During
his	lecture,	he	characterized	statistics	as	a	combination	of	decision	making,	data
analysis	and	modeling,	and	data	collection.	As	he	concluded	his	speech,	he	used
the	modern	non-computer	use	of	data	science	and	suggested	that	statistics	should
be	renamed	data	science.
In	2001	William	Cleveland	introduced	data	science	as	its	own	discipline.	He
extended	statistics	so	that	it	would	incorporate	the	changes	in	data	computing.
Cleveland	gave	six	areas	of	technical	application	that	he	thought	encompassed
the	field	of	data	science:	theory,	tool	evaluation,	pedagogy,	data	computing,
methods	and	models	for	data,	and	multidisciplinary	investigations.
The	IEEE	launched	a	Task	Force	on	Data	Science	and	Advanced	Analytics	in
2013.	The	European	Association	for	Data	Science	was	established	in

Luxembourg	in	the	same	year.	The	IEEE	had	their	first	international	conference
in	2014.	Later	in	2014,	The	Data	Incubator	then	created	a	data	science
fellowship,	and	the	General	Assembly	created	a	student-paid	boot	camp.

What	is	it	Exactly?
At	the	core	of	data,	science	is	data.	There	are	troves	of	raw	information	that	is
being	streamed	in	and	then	stored	in	data	warehouses.	There	is	a	lot	to	learn
through	mining	it.	There	are	advanced	capabilities	that	can	be	built	from	it.	This
means	that	data	science	is	basically	using	data	in	creative	ways	to	add	business
value.	It	flows	like	this:

Data	Warehouse
Discovery	of	Data	-	Insight	and	quantitative	analysis	to	help
strategic	business	decision	making.
Data	Product	Development–	algorithmic	solutions	in
production	and	operating.
Business	Value

The	main	aspect	of	data	science	is	discovering	new	results	from	data.	People	are
exploring	at	a	granular	level	to	understand	and	mine	complex	inferences,
behaviors,	and	trends.	It’s	about	uncovering	hidden	information	that	may	be	able
to	help	companies	make	smarter	choices	for	their	business.	For	example:

Data	mines	in	Netflix	are	used	to	look	for	movie	viewing	patterns	to
better	understand	user’s	interests	and	to	make	decisions	on	the
Netflix	series	they	should	produce.
Target	tries	to	find	the	major	customer	segments	in	its	customer	base
and	their	shopping	behaviors,	which	helps	them	to	guide	messaging
to	other	market	groups.
Proctor	&	Gamble	looks	towards	time	series	models	to	help	them	to
understand	future	demand	and	plan	production	levels.

So	how	does	the	data	scientist	mine	all	this	information?	It	begins	with	data
exploration.	When	a	data	scientist	is	given	a	challenging	question,	they	become	a
detective.	They	will	start	to	investigate	leads,	and	then	try	to	understand
characteristics	or	patterns	in	the	data.	This	means	they	need	a	lot	of	analytical
creativity.

Then	a	data	scientist	can	use	quantitative	techniques	to	dive	a	little	deeper,	such
as	synthetic	control	experiments,	time	series	forecasting,	segmentation,	and
inferential	models.	The	purpose	of	these	is	to	use	data	to	piece	together	a	better
understanding	of	the	information.
The	use	of	data-driven	insight	is	what	helps	to	provide	strategic	guidance.	This
means	that	a	data	scientist	works	a	lot	like	a	consultant,	guiding	businesses	on
how	they	should	respond	to	their	findings.
Data	science	will	then	give	you	a	data	product.	Data	products	are	a	technical
asset	that:

1.	 Uses	data	like	input.
2.	 Processes	the	data	to	get	an	algorithmically-generated	result.

One	of	the	classic	examples	of	a	data	product	is	an	engine	which	takes	in	user
data,	and	then	creates	a	personalized	recommendation	based	upon	that	data.	The
following	are	some	examples	of	data	products:

The	recommendation	engine	that	Amazon	uses	suggests	new	items	to
its	users,	which	is	determined	by	their	algorithms.	Spotify
recommends	new	music.	Netflix	recommends	new	movies.
The	spam	filter	in	Gmail	is	a	data	product.	This	is	a	behind	the	scenes
algorithm	that	processes	the	incoming	mail	and	decides	whether	or
not	it	is	junk.
The	computer	vision	that	is	used	for	self-driving	cars	is	also	a	data
product.	Machine	learning	algorithms	can	recognize	pedestrians,
traffic	lights,	other	cars,	and	so	on.

Data	products	work	differently	than	data	insights.	Data	insights	help	to	provide
some	advice	to	help	a	business	executive	make	smarter	decisions.	Data	products
are	a	technical	functionality	that	encompasses	the	algorithm,	and	it	is	designed	to
work	into	the	main	applications.
The	data	scientist	plays	one	of	the	most	central	roles	in	coming	up	with	the	data
product.	This	means	that	they	have	to	build	out	algorithms	and	test,	refine,	and
technically	deploy	it	into	a	production	system.	The	data	scientist	also	works	as	a

technical	developer	by	creating	assets	that	become	leverage	on	a	wide	scale.

Why	It	Matters
Big	data	means	nothing	if	you	don’t	have	professional	expertise	to	turn	the	data
into	actionable	items.	Today,	there	are	lots	of	institutions	and	organizations	in	the
financial	world	that	are	opening	their	doors	to	big	data	to	unlock	its	power.	This
will	increase	the	value	of	the	data	scientist	who	knows	exactly	how	to	drive	all
the	information	that	is	housed	in	the	institution's	files.
It’s	well	known	that	businesses	today	are	full	of	data.	In	2016	alone,	McKinsey
estimated	that	the	big	data	initiative	within	the	US	healthcare	system	would
cause	a	$300	to	$450	billion	reduction	in	healthcare	costs.	It	could	also	cause	a
12	to	17%	reduction	of	the	$2.6	trillion	overall	healthcare	baseline.	On	the	other
side,	badly	used	data	is	believed	to	be	costing	the	US	around	$3.1	trillion	each
year.
It	has	become	clear	that	value	is	found	in	the	analysis	and	processing	of	data	and
that	is	where	the	data	scientist	plays	an	important	role.	Executives	have	all	heard
about	the	sexy	industry	of	data	science	and	how	data	scientists	are	the	resident
superheroes,	but	many	of	them	are	still	not	aware	of	the	value	of	data	science	for
their	organizations.
Data	science	and	scientist	add	value	to	all	businesses	in	many	different	ways.
Let’s	look	at	the	eight	major	areas.

1.	 Empowers	officers	and	managers	to	make	better	decisions.
An	experienced	data	scientist	will	work	as	a	strategic	partner	and	trusted	advisor
to	an	institution’s	management	to	make	sure	that	the	staff	is	able	to	maximize
their	analytical	capability.	The	data	scientist	will	demonstrate	and	communicate
the	worth	of	the	analytical	products	of	the	institution	to	help	create	an	improved
decision-making	process	across	different	levels	of	the	organization,	by
recording,	measuring,	and	tracking	all	performance	metrics.

2.	 Directs	action	based	upon	trends	that	will	help	define	goals.
Data	scientists	look	at	and	explore	a	business’s	data	to	recommend	and	provide
different	actions	that	will	improve	the	business’s	performance	and	their	customer

relations,	which	will	increase	profitability.
3.	 It	will	challenge	the	staff	to	use	their	best	practices	and	to	focus

on	important	issues.
One	of	the	big	responsibilities	of	the	data	scientist	is	to	make	sure	that	staff
members	understand	and	are	well-versed	in	the	data	and	its	use.	They	will	make
sure	that	the	staff	is	prepared	for	success	by	demonstrating	the	effective	use	of
the	system	to	drive	action	and	insight.	After	the	staff	has	a	good	understanding
of	the	data’s	capabilities,	they	will	shift	their	focus	to	addressing	the	important
challenges	of	the	business.

4.	 Identify	opportunities.
While	they	are	interacting	with	the	business’s	analytics	system,	the	data
scientists	will	question	the	existing	assumptions	and	processes	in	order	to	come
up	with	additional	methods	and	analytic	algorithms.	Their	job	will	require	that
they	are	continuously	and	constantly	improving	the	value	that	comes	from	the
business’s	data.

5.	 Make	decisions	with	data-driven,	quantifiable	evidence.
With	data	science,	the	use	of	data	analyzing	and	gathering	through	different
channels	has	gotten	rid	of	the	need	to	take	high	stake	risks.

6.	 Data	scientists	test	management	decisions.
Half	of	the	battle	of	running	a	good	business	is	making	decisions	and
implementing	change.	The	other	half	is	understanding	the	way	that	these
decisions	will	affect	the	company.	This	is	why	data	scientists	are	important.	It’s
helpful	to	have	somebody	who	can	measure	the	important	metrics	that	relate	to
changes,	and	quantify	their	success.

7.	 Identifying	and	refining	target	audiences.
From	customer	surveys	to	Google	Analytics,	companies	will	have	at	least	a
single	base	of	customer	data	that	they	collect.	But	if	they	don’t	use	it	well,	for
example,	to	find	demographics,	the	data	will	go	to	waste.
The	data	scientist	will	be	able	to	help	identify	target	audiences	through	in-depth
analysis	of	multiple	data	sources.	Once	businesses	have	this	in-depth

information,	they	will	be	able	to	tailor	their	products	and	services	to	their
customer	groups	so	that	they	improve	their	profit	margins.

8.	 They	help	to	recruit	the	best	talent	for	the	organization.
A	recruiter	has	to	constantly	review	resumes.	This	can	change	by	using	big	data
correctly.	With	all	the	information	about	talent	through	job	search	websites,
corporate	databases,	and	social	media,	data	scientists	can	help	find	the	best
candidates	for	the	business’s	needs.
This	means	that	recruitment	won’t	be	as	exhausting	and	time-consuming.	By
mining	the	large	amount	of	data	that	businesses	have	available,	in-housing
application	and	resume	processing,	and	even	the	fancy	data-driven	games	and
tests	can	be	reduced	into	a	more	accurate	and	speedier	selection	process.

What	You	Need
“With	data	collection,	‘the	sooner,	the	better’	is	always	the	best	answer.”	–
Marissa	Mayer	When	it	comes	to	data	science,	there	are	three	major	skill	areas
that	are	blended	together.

1.	 Mathematics	expertise
2.	 Technology;	hacking	skills
3.	 Business/strategy	acumen

Data	science	is	Where	they	all	meet.	The	central	point	of	mining	data	and
creating	a	data	product	is	to	see	the	data	quantitatively.	There	are	correlations,
textures,	and	dimensions	in	the	data	that	are	seen	mathematically.	Finding	a
solution	through	data	becomes	a	brain	teaser	of	quantitative	and	heuristic
technique.	To	find	a	solution	in	a	lot	of	problems	involves	coming	up	with	an
analytic	model	that	is	grounded	in	hard	math.	Understanding	the	mechanics
underneath	those	models	is	crucial	for	success.
There	is	also	a	big	misconception	that	data	science	only	deals	with	statistics.
While	statistics	do	play	an	important	role,	it’s	not	the	only	math	that	is	utilized.
There	are	two	main	branches	of	statistics:	Bayesian	and	classical	statistics.	When
people	start	talking	about	statistics,	they	are	most	often	talking	about	classical
statistics,	but	understanding	both	is	extremely	helpful.
When	you	get	into	more	machine	learning	algorithms	and	inferential	techniques
you	will	lean	heavily	on	linear	algebra.	One	example	is	that	a	popular	way	to
find	hidden	characteristics	within	a	set	of	data	is	with	SCD,	which	has	its
grounding	in	matrix	math	and	doesn’t	have	as	much	to	do	with	classical
statistics.	Overall,	it’s	extremely	helpful	for	a	data	scientist	to	have	a	pretty	good
understanding	of	mathematics	in	all	areas.
When	it	comes	to	hacking,	we’re	not	talking	about	breaking	into	other	people’s
computers.	We	are	talking	about	the	programmer	subculture	that	is	known	as
hacking.	This	is	the	ingenuity	and	creativity	of	using	technical	skills	to	create
things	and	to	discover	new	solutions	to	old	problems.

Why	is	the	skill	of	hacking	important?	Mainly	because	data	scientists	will	use
technology	to	help	them	gather	a	large	amount	of	data,	and	then	work	with
complex	algorithms	to	understand	it.	This	will	require	tools	that	tend	to	be	more
sophisticated	than	a	spreadsheet.	Data	scientists	must	understand	how	to	code,
prototype	fast	solutions,	and	integrate	complex	data	systems.	Some	of	the	most
common	languages	that	are	associated	with	data	science	are	SAS,	R,	Python,	and
SQL.	Some	of	the	less	commonly	used	ones	are	Julia,	Java,	and	Scala.	But	it’s
not	just	having	a	good	understanding	of	these	language	fundamentals.	A	good
hacker	can	creatively	work	their	way	through	different	types	of	challenges	so
that	they	are	able	to	make	their	code	work.

This	means	that	a	data	science	hacker	is	great	at	algorithmic	thinking,	which
means	that	they	can	break	down	tough	problems	and	then	rework	them	so	that
they	are	solvable.	This	is	crucial	because	they	must	work	with	a	lot	of
algorithmic	problems.	They	need	a	good	mental	comprehension	of	tricky	and
high-dimensional	data	control	flows.	They	must	be	fully	clear	on	how	all	of	the
pieces	work	together	to	create	a	cohesive	solution.

It’s	also	important	that	a	data	scientist	is	a	tactical	business	consultant.	Since
data	scientists	work	closely	with	data,	they	can	learn	things	from	data	that	other
people	can’t.	This	makes	them	responsible	for	translating	their	observations	into
shared	knowledge	and	sharing	their	strategy	on	how	they	think	the	problem
should	be	solved.	A	data	scientist	needs	to	be	able	to	share	a	clear	story.	They
shouldn’t	just	throw	out	data.	It	needs	to	be	presented	in	a	cohesive	discussion	of
a	problem	and	its	solution	which	uses	data	insights	its	basis.
Having	business	acumen	plays	just	as	an	important	role	as	having	an	acumen	for
algorithms	and	tech.	There	must	be	a	clear	match	between	business	goals	and
data	science	projects.	In	the	end,	the	value	won’t	come	from	the	tech,	data,	and
math.	It	will	come	from	leveraging	all	this	information	into	valuable	results	for
the	business.
Let’s	break	down	the	prerequisites	for	data	scientists	a	bit	further.

Technical	Skills
Adept	at	working	data	that	is	unstructured.
Understanding	of	SAS	and	other	analysis	tools.
Skills	in	programming
Ability	to	data	process	and	mine.
Skills	in	statistical	analysis.
Preferably	a	Master’s	or	Ph.D.	in	engineering,	statistics,	or
computer	science.

Non-Technical	Skills
Great	data	intuition.
Strong	communication	skills.
A	strong	business	acumen.

The	Advantages	to	Data	Science
“Hiding	within	those	mounds	of	data	is	knowledge	that	could	change	the	life	of	a
patient	or	change	the	world.”	–	Atul	Butte,	Stanford	Quickly	progressing
technology	around	the	world	results	in	big	data	as	its	byproduct.	It	can	be	seen
everywhere;	from	the	information	within	your	smartphone	and	apps	to	the	idea
of	a	car	that	drives	itself.	This	new	modern	phenomenon	is	why	data	scientists
are	becoming	more	necessary.	Data	science	has	been	labeled	as	the	sexiest	career

path	of	the	21st	century,	and	it	will	only	continue	to	grow	and	develop	throughout
the	coming	years.
Because	it	is	still	a	novel	profession,	there	are	a	lot	of	people	that	aren’t
completely	aware	of	the	many	possibilities	that	come	with	being	a	data	scientist.
Those	that	are	interested	in	this	kind	of	work	can	look	forward	to	having	an
outstanding	salary	and	a	rewarding	career.
Here	is	a	breakdown	of	where	data	scientists	work:

2%	of	data	scientists	work	in	gaming.
4%	work	in	consumer	goods	and	retail.
4%	work	in	academia.
4%	work	in	government.
6%	work	in	financial	services.
7%	work	in	pharmaceuticals	and	healthcare.
9%	work	in	consulting.
11%	work	in	a	corporate	setting.
13%	work	in	marketing.
41%	work	in	technology.

There	are	a	lot	of	specific	industries	that	are	in	high	demand	for	people	who	are
well	versed	in	data	science.	It’s	not	surprising	that	the	biggest	need	is	in
technology	with	41%	of	the	total	workforce.	Past	the	more	obvious	applications
in	tech,	work	in	financial,	healthcare,	consulting,	marketing,	and	corporate
services	also	have	a	high	data	science	need.

When	data	science	is	brought	into	a	business,	it	brings	along	with	it	several
different	benefits.	Among	those	are	the	following	seven.

1.	 It	will	monetize	data.
Facebook	turns	the	data	that	they	get	from	their	subscribers	into	money,	and	so
can	any	business.	For	example,	there	are	a	lot	of	retailer	sites	that	will	show	you
a	section	that	says,	“Customers	Who	Bought	This	Item	Also	Bought,”	which	will
show	items	that	is	more	likely	to	provide	them	another	sale.	This	type	of	creative
analysis	is	what	will	allow	a	company	to	increase	its	revenue.

2.	 It	will	mitigate	company	risk.
A	data	scientist	will	analyze	client	churn	patterns	and	allow	a	company	to	react
in	a	proactive	manner	if	they	notice	that	a	trend	of	customers	start	favoring
another	business.	In	order	to	get	the	customers	back,	the	business	will	be	able	to
send	out	teaser	deals	discounts	to	retain	customers.
The	data	scientist	will	also	evaluate	the	data	of	other	businesses	that	a	company
is	looking	to	partner	with.	This	will	help	to	minimize	the	possible	risk.	For
example,	data	science	could	be	used	to	analyze	the	information	from	a	third-
party	payment	processor	about	business	that	they	are	considering	doing	working
with.	They	can	then	use	that	analysis	to	assess	the	creditworthiness	of	the
company.

3.	 It	will	help	a	company	get	a	better	understanding	of	their
customers.

The	behaviors	of	customers	will	change	with	time,	and	it’s	hard	to	monitor	their
changes	without	using	data	science.	For	example,	websites	like	Airbnb,	which
helps	hosts	and	travelers	rent	and	find	affordable	places	to	stay,	recently	looked
at	the	behavior	of	their	consumers	during	website	searches	and	changed	their
algorithm	engine	to	give	them	better	results.	Because	of	this	change,	their
reservations	and	bookings	went	up.	It’s	this	kind	of	insight	into	the	actions	of
consumer	that	a	data	scientist	can	find	so	that	they	can	improve	the	business.

4.	 It	will	give	businesses	unique	insights.
Let’s	assume	that	a	data	scientist	finds	out	that	there	is	a	connection	between

winter	snowstorms	and	the	sale	of	Cocoa	Krispies.	If	a	grocer	had	this
information,	they	could	strategically	place	Cocoa	Krispies	in	the	store	during
snowstorms	so	that	they	can	increase	their	sales.	This	would	be	a	rather
impossible	connection	to	come	up	with	without	data	science.

5.	 It	will	help	with	business	expansion.
A	data	scientist	could	end	up	uncovering	new	markets	that	could	be	interested	in
a	business’s	service	or	product.	An	advertising	campaign	could	be	solid,	but	the
data	scientist	could	end	up	looking	it	over	and	could	figure	out	the	type	of
customers	gained	for	a	certain	initiative	so	that	the	business	can	adjust	future
campaigns.	Data	science	can	be	used	to	find	new	trends,	or	it	could	figure	out
which	inventory	items	will	have	a	faster	impact	on	revenues.

6.	 It	will	improve	forecasting.
Neural	networks	and	machine	learning	have	been	used	to	mine	business	data	for
quite	some	time	to	predict	future	results,	and	there	are	a	lot	of	data	scientists	that
have	skills	in	both.	For	example,	a	business	that	deals	in	car	repair	could	analyze
spikes	in	visits	over	the	past	few	years	so	that	they	can	come	up	with	a	better
schedule	for	their	employees.

7.	 It	will	provide	businesses	with	objective	decisions.
Data	is	a	powerful	tool	that	speaks	for	itself.	Having	verifiable	and	solid	data	on
hand	will	help	a	business	make	better	decisions	that	are	based	on	objectivity.
This	will	take	precedence	and	emotions	out	of	the	problem.	If	emotions,	egos,	or
the	tendency	to	do	things	the	same	all	the	time	has	caused	a	business	problem	in
the	past,	data	science	is	able	to	help.

Data	Science	and	Big	Data
“Data	is	the	new	science.	Big	data	holds	the	answers.”	–	Pat	Gelsinger,	CEO,
VMware

An	unprecedented	growth	of	information	generated	around	the	world	and	on	the
internet	that	has	resulted	in	big	data.	Big	data	refers	to	the	large	group	of
heterogeneous	data	that	comes	from	various	sources	and	isn’t	typically	available
in	standard	database	formats	that	everybody	is	aware	of.	This	data	encompasses
all	different	types	of	data;	unstructured,	semi-structured,	and	structured
information	that	can	be	found	easily	throughout	the	internet.
Big	data	includes:

Structured	data:	transaction	data,	OLTP,	RDBMS,	and	other
structured	formats.
Semi-Structured:	text	files,	system	log	files,	XML	files,	etc.
Unstructured	data	–	web	pages,	sensor	data,	mobile	data,	online	data

sources,	digital	audio,	and	video	feeds,	digital	images,	tweets,	blogs,
emails,	social	networks,	and	other	sources.

All	information	and	data,	no	matter	its	format	or	type,	can	be	considered	big
data.	The	processing	of	big	data	will	normally	start	with	aggregating	data	from
several	sources.
Processing	of	big	data	can’t	be	achieved	through	traditional	Methods.	Instead,
when	it	comes	to	unstructured	data,	you	will	need	specialized	data	modeling
systems,	techniques,	and	tools	to	remove	information	and	insights	as	needed	by
businesses.	Data	science	will	come	in	as	a	scientific	approach	that	will	apply
statistical	and	mathematical	ideas	as	well	as	computer	tools	to	process	big	data.
Data	science	uses	different	areas	like	data	programming,	mining,	cleansing,
intelligent	data	capture	techniques,	mathematics,	and	statistics	to	align	and
prepare	big	data	to	find	information	and	insights.	Data	science	can	be
challenging	because	of	the	complexities	involved	in	applying	and	combing
different	complex	programming	techniques,	algorithms,	and	methods	to	perform
intelligent	analysis	on	big	amounts	of	data.	Data	science	has	evolved	out	of	big
data,	but	there	are	plenty	of	differences	between	data	science	and	big	data.

Key	Difference	Between	Data	Science	and	Big	Data

Here	are	the	main	differences	between	data	science	and	big	data.
Organizations	have	to	gather	big	data	to	help	improve	their
efficiency,	enhance	competitiveness,	and	understand	new	markets.
Data	science	provides	the	mechanisms	or	tools	to	understand	and	use
big	data	quickly.
There	is	no	limit	to	how	much	valuable	data	that	can	be	collected.	To
use	this	data,	the	important	information	for	business	decisions	has	to
be	extracted.	This	is	where	data	science	is	needed.
People	characterize	big	data	by	its	volume,	velocity,	and	variety,
which	is	often	referred	to	as	the	3Vs.	Data	science	provides	the
techniques	and	methods	to	look	at	the	data	that	is	characterized	by
the	3Vs.
Big	data	provides	a	business	with	the	possibility	for	better
performance.	However,	finding	that	information	in	big	data	to	utilize

its	potential	to	enhance	performance	is	a	challenge.	Data	science	will
use	experimental	and	theoretical	approaches	as	well	as	inductive	and
deductive	reasoning.	It	will	unearth	the	hidden	insight	from	all	the
complexity	of	unstructured	data,	which	will	support	organizations	to
notice	the	potential	of	all	the	big	data.
Big	data	analysts	perform	mining	of	helpful	information	from	large
sets	of	data.	Data	scientists	use	statistical	methods	and	machine
learning	algorithms	to	train	computers	to	find	information	without	a
lot	of	programming,	and	to	make	predictions	based	upon	big	data.
Because	of	this,	it’s	important	that	you	don’t	confuse	data	science
with	big	data	analytics.
Big	data	relates	to	technology,	such	as	Hive,	Java,	Hadoop,	and	so
on,	and	is	a	distributed	computing,	and	software	and	analytics	tool.
This	is	different	than	data	science,	which	looks	at	the	strategy	for
business	decisions,	data	structures	and	statistics,	data	dissemination
using	math,	and	all	other	methods	mentioned	earlier.

Through	the	differences	between	data	science	and	big	data,	you	can	see	that	data
science	is	included	as	part	of	the	concept	of	big	data.	Data	science	is	an
important	part	of	a	lot	of	different	application	areas.	Data	science	uses	big	data
to	find	the	most	helpful	insights	through	predictive	analysis.	The	results	are	then
used	to	make	better	choices.	Data	science	is	included	as	a	part	of	big	data,	but
big	data	is	not	included	in	data	science.
The	following	is	a	chart	to	help	show	the	fundamental	differences:

Meaning:
Big	Data:

Large	volumes	of	data	that	can’t	be	handled	using	a
normal	database	program.
Characterized	by	velocity,	volume,	and	variety.

Data	Science:
Data	focused	scientific	activity.

Similar	in	nature	to	data	mining.
Harnesses	the	potential	of	big	data	to	support	business
decisions.
Includes	approaches	to	process	big	data.

Concept:
Big	Data:

Includes	all	formats	and	types	of	data.
Diverse	data	types	are	generated	from	several	different
sources.

Data	Science:
Helps	organizations	make	decisions.
Provides	techniques	to	help	extract	insights	and
information	to	create	large	datasets.
A	specialized	approach	that	involves	scientific
programming	tools,	techniques,	and	models	to	process
big	data.

Basis	of	Formation:
Big	Data:

Data	is	generated	from	system	logs.
Data	is	created	in	organizations	–	emails,	spreadsheets,
DB,	transactions,	and	so	on.
Online	discussion	forums.
Video	and	audio	streams	that	include	live	feeds.
Electronic	devices	–	RFID,	sensors,	and	so	on.
Internet	traffic	and	users.

Data	Science:
Working	apps	are	made	by	programming	developed
models.
It	captures	complex	patterns	from	big	data	and
developed	models.

It	is	related	to	data	analysis,	preparation,	and	filtering.
Applies	scientific	methods	to	find	the	knowledge	in	big
data.

Application	Areas:
Big	Data:

Security	and	law	enforcement.
Research	and	development.
Commerce.
Sports	and	health.
Performance	optimization.
Optimizing	business	processes.
Telecommunications.
Financial	services.

Data	Science:
Web	development.
Fraud	and	risk	detection.
Image	and	speech	recognition.
Search	recommenders.
Digital	advertisements.
Internet	search.
Other	miscellaneous	areas	and	utilities.

Approach
Big	Data:

To	understand	the	market	and	to	gain	new	customers.
To	find	sustainability.
To	establish	realistic	ROI	and	metrics.
To	leverage	datasets	for	the	advantage	of	the	business.
To	gain	competitiveness.
To	develop	business	agility.

Data	Science:

Data	Visualization	and	prediction.
Data	destroy,	preserve,	publishing,	processing,
preparation,	or	acquisition.
Programming	skills,	like	NoSQL,	SQL,	and	Hadoop
platforms.
State-of-the-art	algorithms	and	techniques	for	data
mining.
Involves	the	extensive	use	of	statistics,	mathematics,	and
other	tools.

Data	Scientists
“It	is	a	capital	mistake	to	theorize	before	one	has	data.”	–	Sherlock	Holmes	

Data	scientist	tend	to	appear	to	be	wizards	who	grab	their	magical	crystal	balls,
chant	some	mumbo-jumbo,	and	come	up	with	extremely	detailed	predictions	of
what	a	business’s	future	may	hold.	No	matter	how	much	you	wish	it	was,	data
science	is	not	magic.	The	power	that	data	science	brings	comes	from	a	complete
understanding	of	algorithms	and	statistics,	hacking	and	programming,	and
communication	skills.	Even	more	important,	data	science	is	all	about	using	these
skill	sets	in	a	systematic	and	disciplined	way.
A	data	scientist	manages	big	data.	They	take	a	large	amount	of	data	points	and
use	their	skills	in	programming,	math,	and	statistics	to	organize,	clean,	and
massage	them.	They	then	use	their	analytic	powers,	skepticism	of	existing
assumptions,	contextual	understanding,	and	industry	knowledge	to	find	hidden
solutions	for	challenges	to	a	business.

The	Process	of	Data	Science
Let’s	say,	you	just	got	your	first	job	as	a	data	scientist	a	Hotshop,	a	startup
located	in	San	Francisco.	You’re	on	your	first	day	of	work.	You’re	excited	to	get
started	crunching	data	and	amaze	the	people	around	you	with	your	new
discoveries.	Where	are	you	supposed	to	start?
Over	lunch,	you	meet	the	VP	of	Sales.	As	you	introduce	yourself,	you	ask	“What
data	challenges	should	I	be	looking	at?”
She	thinks	for	a	moment.	You’re	waited	for	an	answer,	the	answer	that	will	help
you	know	exactly	what	you	are	going	to	do	to	have	a	big	impact.
She	finally	asks,	“Would	you	be	able	to	help	us	improve	our	sales	funnel	and
improve	our	customer	conversion	rate?”
The	first	thing	that	pops	into	your	mind	is:	What?	Is	that	even	a	data	science
problem?	She	didn’t	say	anything	about	data.	What	am	I	supposed	to	analyze?
What	does	she	mean?
Fortunately,	your	mentors	have	told	you	that	this	initial	ambiguity	is	a	normal
situation	that	data	scientists	encounter.	The	only	thing	you	have	to	do	is	correctly
apply	your	data	science	process	to	figure	out	what	you	must	do.
When	a	non-technical	boss	asks	you	to	figure	out	a	data	problem,	the	description
can	end	up	being	ambiguous	at	first.	It	becomes	your	job	as	the	data	scientist,	to
change	the	task	into	a	problem,	figure	out	how	you	can	solve	it,	and	the	present
your	solution	to	the	boss.
This	process	uses	several	steps:

Frame	the	problem:	Who	is	the	client?	What	are	they	asking	you,
exactly,	to	solve?	How	are	you	able	to	translate	the	ambiguous
request	into	a	well-defined	and	concrete	problem?
Collect	the	data	that	you	need	to	solve	the	problem.	Do	you	already
have	access	to	this	data?	If	you	do,	what	parts	of	this	data	can	help?
If	you	don’t,	what	data	do	you	need?	What	resources,	such	as
infrastructure,	time,	and	money,	do	you	need	to	get	the	data	to	a

usable	form?
Process	your	data:	Raw	data	is	very	rarely	able	to	be	used	right	out	of
the	box.	There	will	be	errors	in	the	collection,	missing	values,	corrupt
records,	and	lots	of	other	challenges	you	have	to	take	care	of.	You
first	have	to	clean	the	data	to	change	it	into	a	form	that	you	will	be
able	to	analyze.
Explore	the	data:	After	you	have	the	data	cleaned,	you	need	a	high
level	of	understanding	of	the	information	that	is	contained	in	it.	What
are	the	obvious	correlations	or	trends	that	you	see	within	the	data?
What	high-level	characteristics	does	it	have,	and	are	there	any	of
them	that	is	more	important	than	the	other?
Perform	in-depth	analysis:	This	is	typically	the	core	of	the	project.
This	is	where	you	use	the	machinery	of	data	analysis	to	find	the	best
predictions	and	insights.
Communicate	the	results	of	your	analysis:	All	of	the	technical	results
and	analysis	that	you	have	found	isn’t	very	valuable	unless	you	are
able	to	explain	it	in	a	way	that	is	compelling	and	comprehensible.
Data	storytelling	is	a	very	underrated	and	critical	skill	that	a	data
scientist	needs	to	use	and	build.

Responsibilities	of	a	Data	Scientist
On	any	day	a	data	scientist	may	have	to:

Recommend	the	most	cost-effective	changes	that	should	be	made	to
existing	strategies	and	procedures.
Communicate	findings	and	predictions	to	IT	and	management
departments	through	effective	reports	and	visualizations	of	data.
Come	up	with	new	algorithms	to	figure	out	problems	and	create	new
tools	to	automate	work.
Devise	data-driven	solutions	to	challenges	that	are	most	pressing.
Examine	and	explore	data	from	several	different	angles	to	find
hidden	opportunities,	weaknesses,	and	trends.
Thoroughly	prune	and	clean	data	to	get	rid	of	the	irrelevant
information.
Employ	sophisticated	analytics	programs,	statistical	methods,	and
machine	learning	to	get	data	ready	for	use	in	a	prescriptive	and
predictive	modeling.
Extract	data	from	several	external	and	internal	sources.
Conduct	undirected	research	and	create	open-ended	questions.

Different	companies	will	have	a	different	idea	of	data	scientist	tasks.	There	are
some	businesses	that	will	treat	their	data	scientists	like	glorified	data	analysts,	or
combine	the	duties	with	data	engineering.	There	are	others	that	need	top-level
analytics	experts	that	are	skilled	in	intense	data	visualizations	and	machine
learning.
As	data	scientists	reach	new	experience	levels	or	change	jobs,	the
responsibilities	they	face	will	change	as	well.	For	example,	a	person	that	works
alone	for	a	mid-sized	company	may	spend	most	of	their	day	cleaning	and
munging	data.	High-level	employees	that	are	a	part	of	a	business	that	offers	data-
based	services	could	have	to	create	new	products	or	structure	big	data	projects
on	an	almost	daily	basis.

Qualifications	of	Data	Scientists
There	are	three	education	options	that	you	will	need	to	look	at	when	considering
a	career	in	data	science.

1.	 Graduate	certificates	and	degrees	provide	recognized	academic
qualifications,	networking,	internships,	and	structure	for	your	resume.
This	will	end	up	costing	you	a	lot	of	money	and	time.

2.	 Self-guided	courses	and	MOOCs	are	cheap	or	free,	targeted,	and
short.	They	will	let	you	complete	your	projects	within	your	own
timeframe,	but	they	will	require	you	to	structure	your	own	career
path.

3.	 Bootcamps	are	a	lot	faster	and	more	intense	than	traditional	degrees.
They	may	even	be	taught	by	data	scientists,	but	they	will	not	provide
you	with	a	degree	that	has	initials	after	your	name.

Academic	qualifications	are	probably	more	important	than	you	think.	It’s	very
rare	for	a	person	that	doesn’t	have	an	advanced	quantitative	degree	to	have	the
skills	that	a	data	scientist	needs.
Burtch	Works,	in	its	salary	report,	found	that	46%	of	data	scientists	have	a	PhD
and	88%	have	a	master’s	degree.	For	the	most	part,	these	degrees	are	in	rigorous
scientific,	quantitative,	or	technical	subjects,	which	includes	statistics	and	math	–
32%,	engineering	–	16%,	and	computer	science	–	19%.
Many	companies	are	desperate	to	find	candidates	that	have	real-world	skills.	If
you	have	the	technical	knowledge,	it	could	trump	the	preferred	degree
requirements.
What	skills	are	you	going	to	need	to	be	a	data	scientist?
1)	Technical	skills:

Cloud	tools	such	as	Amazon	S3.
Big	data	platforms	such	as	Hive	&	Pig,	and	Hadoop.
Python,	Perl,	Java,	C/C++
SQL	databases,	as	well	as	database	querying	languages.

SAS	and	R	languages.
Unstructured	data	techniques.
Data	visualization	and	reporting	techniques.
Data	munging	and	cleaning.
Data	mining
Software	engineering	skills
Machine	learning	techniques	and	tools.
Statistics
Math

This	list	is	always	changing	as	data	science	changes.
2)	Business	Skills:

Industry	knowledge:	It’s	important	to	understand	how	your	chosen
industry	works	and	how	the	data	is	utilized,	collected,	and	analyzed.
Intellectual	curiosity:	Data	Scientists	have	to	explore	new	territories
and	find	unusual	and	creative	ways	to	solve	problems.
Effective	communication:	Data	Scientists	have	to	explain	their
discoveries	and	techniques	to	non-technical	and	technical	audiences
in	a	way	that	they	can	understand.
Analytic	problem-solving:	Data	Scientists	approach	high-level
challenges	with	clear	eyes	on	what	is	important.	They	employ	the
right	methods	and	approaches	to	create	the	best	use	of	human
resources	and	time.

Would	You	Be	a	Good	Data	Scientist?
To	figure	out	whether	or	not	you	would	make	a	good	data	scientist,	ask	yourself
these	questions:

Are	you	interested	in	broadening	your	skills	and	taking	on	new
challenges?
Do	you	communicate	well	both	visually	and	verbally?
Do	you	enjoy	problem-solving	and	individualized	work?
Are	you	interested	in	data	analysis	and	collection?
Do	you	have	substantial	work	experience	in	the	areas	involved	in
data	science?
Do	you	have	a	degree	in	marketing,	management	information
systems,	computer	science,	statistics,	or	mathematics?

If	you	were	able	to	answer	yes	to	any	of	these	questions,	then	you	will	probably
find	a	lot	of	enjoyment	in	data	science.
It’s	important	that	data	scientists	have	knowledge	of	statistics	or	math.	It’s	also
important	that	they	have	a	natural	curiosity,	such	as	critical	thinking	and
creativity.	What	are	you	able	to	do	with	the	data?	What	undiscovered
information	is	hidden	within	the	data?	You	need	to	have	the	ability	to	connect
the	dots	and	have	a	desire	to	find	the	answers	to	these	questions	you	haven’t
been	asked	if	you	notice	that	there	is	data	that	is	full	of	potential.

The	Importance	of	Hacking
“Torture	the	data,	and	it	will	confess	to	anything.”	–	Ronald	Coase,	Economics,
Nobel	Prize	Laureate

According	to	Drew	Conway,	a	political	science	Ph.D.	student	at	New	York
University	and	a	former	intelligence	community	member,	skills	for	a	data
scientist	should	be	broken	into	three	categories:

1.	 Hacking	skills
2.	 Statistical	and	math	knowledge
3.	 Substantive	expertise

Having	hacking	skills	is	important	because	data	tends	to	be	inside	several
locations	and	in	different	systems,	which	makes	discovering	them	just	a	bit
challenging.
Data	hackers	typically	have	a	broad	set	of	technical	skills,	but	they	likely	won’t
be	a	complete	expert	in	any	of	the	skills,	such	as:

Data	Munging
Big	data

Databases
Dashboarding/Reporting
Visualization
Machine	learning
Statistical	programming

That’s	a	pretty	long	list,	so	how	can	a	person	learn	all	of	these	things	in	a	decent
amount	of	time?	They	have	to	choose	one	comprehensive	technology	stack,	and
then	complete	everything	in	the	stack.
One	such	technology	stack	would	be	the	R-Hadoop	stack.	R	is	an	open-source
and	free	statistical	programming	language	that	was	originally	based	upon	the	S
programming	language.	There	are	a	few	reasons	why	a	person	may	choose	to
start	with	R	for	data	analysis:

R	works	great	for	getting	your	job	done,	especially	when	it	comes	to
the	tech	industry.
R	is	a	complete	programming	language,	unlike	SPSS	or	SAS,	R	isn’t
only	a	procedural	language.
R	is	quite	easy	to	learn	and	is	great	for	hacking.	You	won’t	have	to
have	a	lot	of	experience	with	programming	to	be	able	to	get	started
doing	decent	work	with	R.
It	is	comprehensive.	Nearly	any	machine-learning	or	statistical	task
you	are	able	to	dream	up	has	a	pre-built	library	in	R.
It’s	free.	SPSS	and	SAS	tend	to	be	expensive	to	get	started	in,	and
you	will	normally	have	to	buy	new	methods	if	you	are	interested	in
trying	them	out.

Hadoop	is	an	open-source	and	free	distributed	computing	framework.	Hadoop	is
typically	used	for	every	part	of	big	data:	modeling,	databases,	and	analysis.	A	lot
of	the	top	companies	use	Hadoop,	which	includes	LinkedIn,	Facebook,	and
Twitter.	Whenever	you	hear	somebody	talking	about	Hadoop,	you	will	probably
end	up	hearing	about	MapReduce,	which	is	a	framework	that	gives	you	the
ability	to	solve	large-scale	data	problems	with	clusters	of	commodity	computers.

The	following	are	some	reasons	why	Hadoop	is	perfect	system	for	starting	out
with	big	data:

Hadoop	is	a	perfect	system	to	get	your	job	done,	and	it	seems	as	if
it’s	on	every	job	ad	for	a	data	scientist.
Hadoop	is	comprehensive.	Pretty	much	all	big	data	processing	and
storage	problems	can	be	figured	out	using	the	Hadoop	system.
It	is	quite	easy	to	get	started	with,	even	if	you	don’t	have	a	cluster	of
computers.	Cloudera	is	a	great	service	to	check	out	with	its	online
trail	and	a	VM	that	you	are	able	to	download	completely	free.
Again,	it	is	free.

The	R-Hadoop	stack	gives	you	the	ability	to	do	pretty	much	anything	that	you
would	need	to	form	data	hacking,	such	as:

Data	munging:	This	means	to	clean	data	and	then	rearrange	it	in	a
way	that	is	more	useful.	Imagine	something	like	parsing	unusual	date
formats,	turning	columns	into	rows,	getting	rid	of	malformed	values,
and	so	on.	Hadoop	and	R	have	applications	to	help	with	this.	R	is	an
amazing	and	easy	way	to	process	small	to	moderate	sized	sets	of
data.	Hadoop	gives	you	the	ability	to	write	out	your	own	programs,
and	then	rearrange	and	clean	all	of	the	large	sets	of	data	when	you
need	to.
Big	data:	This	is	the	main	purpose	of	Hadoop.	Hadoop	gives	you	the
ability	to	process	and	store	essentially	an	unlimited	amount	of	data	on
standard	commercial	hardware.	There	is	no	need	for	a	supercomputer.
Depending	and	the	size	of	data,	R	has	a	pretty	good	selection	of
libraries	that	you	can	work	directly	with,	such	as	data.table.
Databases:	Hadoop	has	a	scalable	data	warehouses	system	built	on	it
called	Hive	that	works	for	ad-hoc	SQL-style	querying	of	large	sets	of
data.	This	was	developed	at	Facebook.	HBase,	which	is	used	by
Twitter,	and	Cassandra,	which	is	used	by	Netflix,	are	other	types	of
database	solutions	that	have	been	built	on	Hadoop.

Dashboarding	and	reporting:	R	has	the	knit	package	that	will	give
you	the	ability	to	create	dynamic	and	beautiful	reports.	This	package
is	a	web	framework	that	is	used	for	creating	interactive	and	stylish
web	apps.
Visualization:	Using	the	ggplot2	package,	you	can	create	completely
customizable	and	professional	looking	2D	plots.
Machine	learning:	The	caret	package	provides	a	wrapper	for	a	lot	of
algorithms,	and	it	makes	it	super	easy	to	test,	train,	and	tune	machine
learning	models.
Statistical	programming:	R	comes	with	a	package	that	is	used	for	data
exploration,	regression,	statistical	tests,	and	pretty	much	anything
else	that	you	could	think	of.

You	can	use	Hadoop	and	R	on	a	Windows	computer,	but	they	work	a	lot	better
and	more	naturally	on	a	Unix-based	system.	That	system	might	end	up	being	a
bit	of	a	learning	curve,	but	what	you	get	from	using	a	Unix	system	is	amazing,
and	it	will	look	great	on	a	resume.
Hadoop	and	R	may	be	able	to	cover	most	cases,	but	there	are	some	situations
where	you	may	be	looking	to	use	a	different	feature.	For	example,	Python	has	a
library	that	will	make	text	mining	a	lot	more	scalable	and	easier	than	R	does.
And	if	you	are	interested	in	creating	a	web	app,	Shiny	may	not	be	flexible
enough	so	you	will	want	to	go	with	a	more	traditional	web	framework.	For	the
most	part,	you	should	be	able	to	get	by	Hadoop	and	R.	Now	we	will	be	going
into	more	depth	about	Python	because	it	is	more	commonly	used	for	data	science
than	R	is.
You’re	probably	wondering	why	you	should	stick	with	learning	only	one
technology	stack.	A	lot	of	people	think	that	they	should	use	the	right	tool	for	the
job,	and	they	would	be	afraid	that	only	learning	one	would	get	them	stuck	in	the
data	science	ecosystem.	These	are	all	very	good	points	but	focusing	on	a	single
stack	comes	with	its	advantages,	especially	if	you’re	just	starting	out.	First	off,	if
you	are	switching	training	paths	and	resources	a	lot,	you	will	end	up	wasting	a

bunch	of	time.	Secondly,	it	becomes	motivating	and	useful	to	focus	l	on	a	single
technology	because	when	you	get	good	at	one	thing,	it	is	a	faster	way	of	solving
problems.
In	the	references	chapter	you	will	see	links	to	help	pages	from	Hadoop,	R,	and
several	other	technologies	we	will	discuss	in	this	book.

The	Importance	of	Coding
“Having	skills	in	statistics,	math,	and	programming	is	certainly	necessary	to	be
a	great	analytic	professional,	but	they	are	not	sufficient	to	make	a	person	a	great
analytic	professional.”	–	Bill	Franks,	Chief	Analytics	Officer	at	Teradata

The	coding	skills	that	you	need	to	get	into	data	science	will	depend	on	the	area
of	data	science	that	you	may	end	up	working	on.	If	you	end	up	managing
databases,	it’s	important	that	you	know	that	as	more	enterprises	start	using	data
science,	legacy	skills,	like	SQL,	will	hang	around.	Larger	companies	will	end	up
using	SQL	through	their	operations.
If	you	want	to	do	more	with	the	data	that	you	have	collected,	it	may	be	best	if
you	expand	your	knowledge	of	SQL	with	a	focus	on	skills	such	as	managing,
collecting,	and	storing	data.	This	may	seem	obvious,	but	it	is	worth	keeping	this
in	the	back	of	your	mind	as	we	look	at	the	trends.
If	you	plan	to	use	your	data	to	perform	visualization,	analytics,	and	modeling,

you	will	want	to	make	sure	you	are	strong	in	Java,	Python,	and	R.
R	has	started	to	become	the	lingua	franca	for	the	pure	data	scientist,	especially
when	it	is	used	in	scientific	research	and	finance.	It	works	as	a	procedural
language,	instead	of	an	object-oriented	language	such	as	Java	or	Python.	It	will
likely	require	more	code	to	get	the	job	done,	but	there	is	more	that	you	can	do
with	it.	R	also	has	a	granular	functionality	that	a	lot	of	data	scientists	prefer	to
use,	especially	whenever	it	comes	to	having	to	deal	with	a	lot	of	data.
This	being	said,	Java	is	extremely	scalable	and	fast.	While	R	is	able	to	present	a
lot	more	options	when	it	comes	to	working	with	complex	data	issues,	there	are	a
lot	of	startups,	as	well	as	other	businesses,	who	love	Java	for	giving	them	more
bang	for	their	product	development	and	developer	training	buck.
Python	tends	to	fall	in	between	things.	It	is	able	to	do	a	lot,	it’s	scalable,	and	it’s
fast.	With	a	skills	market	that	likes	to	have	a	good	enough	for	enough	uses,	the
best	thing	to	turn	to	is	Python.
The	fresh	areas	for	the	most	growth	will	circle	around	deep	learning,	AI,	and
machine	learning.	The	number	of	people	that	work	in	data	science	who	have
these	skills	has	doubled	over	the	past	three	years,	and	now	takes	up	almost	a
third	of	the	industry.	The	great	thing	about	Java,	Python,	and	R	is	that	they	all
plug	into	machine	learning,	so	taking	the	time	to	learn	any	of	these	skills	is	time
well	spent.
When	it	comes	specifically	to	deep	learning,	Google	TensorFlow	has	changed
quickly	to	get	a	strong	leadership	position,	and	it	is	followed	closely	by	Keras.	A
little	bit	of	an	interesting	note	about	TensorFlow.	It	is	written	in	C++	which,	until
just	a	few	years	ago,	was	the	leading	language	of	data	science.	TensorFlow
actually	runs	on	a	Python	interface	that	works	on	a	C++	foundation,	which
means	you	won’t	have	to	understand	C++	coding	in	order	to	use	TensorFlow.
This	is	the	kind	of	dynamic	that	is	taking	place	within	the	world	of	data	science
and	analytics.	As	data	starts	to	become	ubiquitous,	the	uses	will	start	to	become
innumerable,	and	the	amount	of	code-based	solutions	will	grow	exponentially.
This	will,	in	turn,	drive	a	market	for	data	science	tools	that	will	help	to	simplify

the	coding	process.
The	main	point?	View	this	like	it	is	college:	while	you	may	pick	out	a
programming	language	for	your	major,	it	doesn’t	hurt	to	create	a	working
knowledge	of	several	others	as	your	minors.	Things	in	the	data	science	world
change	fast,	and	these	are	very	exciting	times	for	data	scientist	and	coders.

Writing	Production-Level	Code
When	it	comes	to	the	most	sought-after	skills	for	a	data	scientist,	it	is	to	write
production-level	code.	If	you	were	a	software	engineer	before	you	became	a	data
scientist,	this	probably	doesn’t	sound	all	that	challenging	as	you	would	already
have	perfected	the	skill	of	developing	code	and	deploying	it	into	production.
This	section	is	here	to	help	those	that	are	new	to	writing	code	and	are	interested
in	learning.	This	is	for	those	that	view	writing	code	as	a	formidable	task.

1.	 Keep	it	modular
This	is	pretty	much	just	a	software	design	technique	that	is	recommended	for
software	engineers.	The	idea	is	that	you	should	break	large	code	into	small
working	parts	based	on	their	functionality.	This	can	be	broken	down	into	two
parts.

	One,	break	up	the	code	into	small	pieces	that	each	have	a	specific	task
to	perform.

	Two,	group	the	functions	into	different	modules,	or	Python	files,	based
on	their	usability.	It	helps	you	to	stay	organized,	and	it	makes	the
code	more	maintainable.

Your	first	step	would	be	to	decompose	large	code	into	as	many	easy	functions
with	certain	outputs	and	inputs	as	possible.	Each	one	of	the	functions	needs	to
perform	one	task,	such	as	calculate	root-mean-squared	error,	score	a	model,
replace	erroneous	values,	cleanup	outliers	in	the	data,	and	so	on.	Try	to	break	up
each	of	these	functions	a	bit	further	into	subtasks	and	continue	doing	this	until
none	of	these	functions	are	able	to	be	broken	down	further.
Low-level	functions	–	these	are	the	most	basic	functions	that	aren’t	able	to	be
further	broken	down.	For	example,	computing	Z-score	or	RMSE	of	the	data.
These	functions	are	able	to	be	widely	used	for	implementation	and	training	of
any	machine	learning	or	algorithm	model.
Medium-level	functions	–	these	are	functions	that	use	one	or	more	medium	or
low-level	function	to	perform	a	certain	task.	For	example,	a	cleanup	outlier

works	by	using	computer	Z-score	function	to	get	rid	of	the	outliers	by	only
keeping	the	data	that	is	inside	certain	bounds,	or	the	error	function	that	can	use
compute	RMSE	function	to	find	the	RMSE	values.
High-level	functions	–	these	are	functions	that	use	one	or	more	low	or	medium
level	functions	in	order	to	perform	a	certain	task.	An	example	would	be	that	a
model	training	function	has	to	have	several	functions	like	one	to	find	random
sampled	data,	a	metric	function,	a	model	scoring	function,	and	so	on.
The	last	step	is	to	group	all	of	the	low	and	medium	level	functions	that	are	used
for	more	than	a	single	algorithm	into	a	single	python	file	that	can	be	imported	as
a	module.	Then	group	the	other	low	and	medium	level	functions	that	can	be	used
for	the	algorithm	into	a	different	file.	You	need	to	place	the	high-level	functions
into	a	Python	file	of	their	own.	This	file	will	dictate	each	of	the	steps	in	the
development	of	your	algorithm;	from	grouping	data	from	various	sources	to	your
final	model.
There	isn’t	really	a	fixed	rule	that	you	have	to	follow	with	the	above	steps,	but	it
is	best	that	you	start	these	steps	and	then	start	to	develop	your	own	style	once
you	get	a	hang	of	things.

2.	 Logging	and	instrumentation
LI	are	analogous	to	the	black	box	in	all	aircraft	that	records	everything	that
happens	in	the	cockpit.	The	main	purpose	for	LI	is	to	record	any	of	the	useful
information	from	your	code	while	it	is	being	executed.	This	will	help	the
programmer	to	debug	the	code	if	something	goes	wrong,	and	to	improve	how	the
code	performs,	like	reducing	execution	time.
Logging	–	This	records	the	actionable	information	like	critical	failures	while	the
code	is	running	and	structured	data	like	the	intermediate	results	that	will	have	to
be	used	later	by	the	code.	Multiple	log	levels	like	errors,	warn,	info,	and	debug
are	acceptable	to	see	during	the	testing	and	development	phases.	However,	these
need	to	be	avoided	during	production.
Logging	needs	to	be	minimal	and	contain	only	the	information	that	is	required
for	human	attention	and	that	needs	immediate	handling.

Instrumentation	–	This	records	all	of	the	other	information	that	was	left	out
during	logging	that	is	helpful	in	validating	the	code	execution	steps	and	to	work
on	performance	improvement.	In	this	phase,	it	is	always	better	to	have	extra	data
so	that	the	instrument	has	as	much	information	as	possible.
Validate	Execution	Steps	–	You	need	to	record	information	like	steps	gone
through,	intermediate	results,	and	task	names.	This	will	help	you	to	validate	the
results	and	confirm	that	the	algorithm	has	gone	through	all	the	steps	that	it
should.	Invalid	results	or	strange	performance	of	the	algorithm	may	not	end	up
raising	a	critical	error	that	logging	would	catch.	This	is	why	it	is	crucial	that	you
record	this	information	as	well.
Improve	Performance	–	It’s	important	that	you	record	the	time	it	takes	for	each
subtask,	task,	and	the	memory	that	each	variable	uses.	This	will	help	you	to
improve	your	code	so	that	you	can	make	changes	to	optimize	it	to	run	faster	and
lower	memory	consumption.
Instrumentation	needs	to	record	all	of	the	information	that	was	not	logging,	and
that	will	help	validate	that	the	code’s	execution	steps	and	work	performance	is
improved.	It	is	always	better	that	you	have	more	data	than	not	enough.

3.	 Code	Optimization
Code	optimization	means	reduced	run	time	and	memory	usage.	The	time	and
space	complexity	is	often	shown	with	O(x),	which	is	also	referred	to	as	the	Big-
O	representation.	The	x	is	the	main	term	in	the	time	or	space	taken	polynomial.
Space	and	time	complexity	are	the	metrics	that	are	used	for	measuring	the
algorithms	efficiency.
For	example,	let’s	assume	that	there	is	a	nested	for	loop	that	is	size	n	and	that	it
takes	around	two	seconds	for	it	to	run,	and	it	is	followed	by	a	simple	for	loop
that	will	take	around	four	seconds	to	run.	Your	equation	for	the	time
consumption	would	be	shown	as:
“Time	taken	~	2n^2	+	4n	=	O(n^2	+	n)	=	O(n^2)”
When	it	comes	to	a	Big-O	representation,	you	have	to	drop	the	non-dominant
terms	and	the	coefficients.	The	scaling	factors	or	coefficients	are	ignored

because	you	don’t	have	as	much	control	over	them	when	it	comes	to
optimization	flexibility.	It’s	important	that	you	remember	the	coefficient	in
absolute	time	taken	as	it	refers	to	the	product	of	the	number	of	the	for	loops,	and
the	time	that	it	takes	for	the	runs	whereas	the	coefficients	within	the	O(n^2	+	n)
shows	the	amount	of	for	loops.	You	need	to	get	rid	of	the	lower	order	terms.	This
is	why	the	Big-O	for	this	process	is	O(n^2).
Your	goal	is	to	replace	the	least	efficient	parts	of	your	code	with	a	less	complex
and	better	alternative.	For	example,	using	O(n)	is	a	lot	easier	than	O(n^2).	The
biggest	problem	you	will	face	in	coding	are	the	for	loops,	and	a	least	common
problem	that	is	worse	than	the	for	loop	are	recursive	functions,	meaning
(O(branch	^	depth)).	You	should	try	to	change	out	the	for	loops	with	Python
functions	or	modules,	which	tend	to	be	optimized	with	C-code	that	performs	the
computation,	instead	of	Python	so	that	you	get	a	shorter	run	time.

4.	 Unit	Testing
This	will	automate	code	testing	when	it	comes	to	functionality.
Code	has	to	be	able	to	clear	several	stages	of	debugging	and	testing	before	it	can
go	into	production.	There	are	typically	three	levels:	production,	development,
and	staging.	There	are	some	companies	where	you	will	find	a	level	before
production	that	will	mimic	the	environment	of	your	production	system.	You	have
to	make	sure	that	the	code	is	completely	free	of	any	obvious	problems	and	it	can
handle	possible	exceptions	once	it	goes	into	production.
In	order	to	find	the	different	issues	that	could	come	up	you	have	to	test	your
code	against	different	corner	and	edge	cases,	data	sets,	scenarios,	and	the	like.
It’s	not	efficient	for	you	to	carry	out	all	of	these	processes	manually	every	time
you	want	to	test	some	code.	This	is	the	reason	you	should	unit	testing	will	has	all
of	the	test	case	sets	and	is	able	to	be	executed	when	you	need	to	test	your	code.
It’s	important	to	add	in	different	test	cases	that	will	expand	your	testing	results.
The	unit	testing	module	will	work	through	every	test	case	and	will	compare	the
code’s	output	with	what	you	expected	to	happen.	If	the	code	does	not	achieve	the
expected	results,	the	test	will	fail.	It	is	a	pretty	good	indicator	that	your	code

would	end	up	failing	if	you	put	it	into	production.	It’s	important	that	you	debug
your	code	and	then	repeat	the	testing	process	until	your	code	pasts	all	of	the
tests.
Python	makes	your	life	a	lot	easier	by	using	a	module	called	unittest.

5.	 Compatibility	with	ecosystem
Chances	are	your	code	isn’t	going	to	be	a	standalone	module	or	function.	You
will	end	up	integrating	it	into	your	company’s	code	ecosystem,	and	the	code	will
need	to	run	with	the	other	sections	of	the	ecosystem	without	experiencing	any
failures	or	flaws.
For	example,	let’s	assume	that	you	have	come	up	with	an	algorithm	to	provide
recommendations.	This	process	will	normally	consist	of	finding	recent	data	from
the	company	database,	updating	and	generating	the	recommendations,	and
storing	the	data	in	a	database	which	has	to	be	read	by	frameworks	like	web
pages	to	show	your	recommended	items.	This	works	like	a	chain.	You	new
chain-link	has	to	be	able	to	be	locked	in	with	the	previous	chain	links	otherwise
things	will	end	up	failing.	Every	process	has	to	run	the	way	people	expect	it	to.
Every	process	is	going	to	have	to	have	defined	output	and	input	requirements,
expected	response	times,	and	so	on.	Whenever	your	code	is	faced	with	a	request
from	other	modules	for	updated	recommendations,	the	code	has	to	be	able	to
return	the	expected	values	in	a	format	that	is	acceptable.	If	it	ends	up	giving
unexpected	results,	like	suggesting	milk	when	the	person	was	looking	at	stereos,
undesired	formats,	like	suggestions	that	are	in	text	and	not	pictures,	and
unaccepted	time	to	respond,	this	implies	that	your	code	isn’t	working	with	the
system.
The	best	way	to	make	sure	that	you	avoid	this	kind	of	scenario	is	to	discuss	with
the	other	people	on	the	team	what	the	requirements	are	before	you	start	to
develop	your	code.	If	you	don’t	have	a	team	at	your	disposal,	read	your	code
documentation	and	the	code	itself,	if	you	have	to,	in	order	to	understand	all	of
the	requirements.

6.	 Version	Control

Git	–	this	is	a	version	control	system	and	is	one	of	the	best	practices	that	have
come	to	source	code	management	in	recent	years.	It	tracks	all	of	the	changes	that
you	make	to	your	computer	code.	There	may	be	other	types	of	version	control	or
tacking	systems,	but	Git	is	the	one	that	is	most	widely	used.
In	the	simplest	of	terms,	it	is	“modify	and	commit.”	But	that	may	be	a	bit	too
simplified.	There	are	a	lot	of	steps	to	this	process	like	coming	up	with	a	branch
for	development,	pushing	files	to	remote	branches,	pulling	files	from	remote
branches,	committing	changes	locally,	and	many	more	things,	which	you	should
take	the	time	to	explore	on	your	own.
Each	time	that	you	change	your	code,	instead	of	saving	your	file	using	a
different	name,	you	have	to	commit	these	changes.	This	means	that	you
overwrite	your	old	file	with	the	changes	that	you	made	along	with	a	key	linked
to	it.	Comments	are	normally	written	whenever	you	commit	a	change	to	your
code.
Let’s	assume	that	you	don’t	like	a	change	that	you	made	in	your	last	commit,	and
you	want	to	change	your	code	back	to	what	it	previously	was.	You	can	easily	do
this	by	using	the	commit	reference	key.	Git	is	a	very	powerful	and	is	extremely
useful	for	code	maintenance	and	development.
You	may	already	understand	why	this	is	crucial	for	production	systems,	and	why
you	have	to	learn	how	to	use	Git.	It’s	important	that	you	have	the	flexibility	to
switch	code	back	to	an	old	version	that	is	stable	so	that	you	are	prepared	if	your
new	version	fails.

7.	 Readability
You	have	to	make	sure	that	the	code	you	write	is	easily	understood	by	others	as
well,	at	least	when	it	comes	to	your	teammates.	Moreover,	you	may	even	find	it
challenging	to	understand	your	code	after	a	few	months	have	passed	since	you
wrote	it	if	you	don’t	follow	proper	naming	conventions.
Appropriate	variable	and	function	names
The	function	and	variable	names	need	to	be	self-explanatory.	When	somebody
else	reads	your	code,	they	need	to	be	able	to	easily	figure	out	what	the	variables

contain	and	what	the	functions	do.
It’s	fine	if	you	have	a	long	name	that	perfectly	lays	out	what	the	functionality	or
role	is	instead	of	having	a	short	name	like	x,	y,	z,	and	so	on.	Those	tend	to	be
vague.	You	should	try	to	keep	from	exceeding	30	characters	for	your	variable
names,	and	50	to	60	characters	for	function	names.
The	standard	code	width	used	to	be	80	characters	based	on	outdated	IBM
standards,	which	are	outdated.	Per	GitHub	standards,	the	character	base	is	120.

Setting	a	page	width	limit	of	1/4th	for	character	names	will	provide	you	with	30,
which	is	a	good	length	and	doesn’t	fill	up	the	page.	You	function	names	can	be	a
bit	longer,	but	it’s	best	that	you	don’t	fill	up	the	whole	page,	so	you	if	set	a	limit
of	½	of	the	page	width,	you	will	get	60.
For	example,	if	you	need	to	write	out	the	variable	of	the	average	age	of	Asian
men,	you	can	write	it	as	mean_age_Asia	instead	of	writing	age	or	x.	The	same
goes	for	function	names	s	well.
Doc	string	and	comments
Besides	having	appropriate	function	and	variable	names,	it’s	imperative	that	you
place	notes	and	comments	when	you	need	to	so	that	they	help	your	readers
understand	your	code.
Doc	string	–	This	is	module,	function,	and	class	specific.	It	is	the	first	couple	of
lines	in	your	function	definition	that	describes	your	functions’	role,	as	well	as	its’
outputs	and	inputs.	You	need	to	add	this	text	between	a	set	of	three	double
quotes.
“def	<function_nam>:
“””<docstring>”””
return	<output>”
Comments	–	These	can	be	placed	anywhere	in	your	code	to	tell	a	reader	about
the	role	or	action	of	certain	line	or	section.	The	need	for	adding	comments	will
be	reduced	significantly	if	you	make	sure	that	you	give	your	functions	and
variables	appropriate	names.	You	code	should	be,	at	least	for	the	most	part,	self-

explanatory.
Code	review
While	this	isn’t	quite	a	direct	step	in	the	process	of	writing	quality	production
code,	having	your	code	reviewed	by	your	peers	is	helpful	in	improving	your
skills	in	coding.
Nobody	is	going	to	write	completely	flawless	computer	code	unless	they	have
been	coding	for	over	ten	years.	There	is	always	going	to	be	room	for	some
improvement.	Chances	are,	you	can	find	somebody	that	is	better	than	you.	It	will
all	depend	on	the	number	of	hours	a	person	invests	in	learning,	practicing,	and
improving	their	coding	skills.
You	may	find	yourself	in	a	situation	where	you	are	the	most	experienced	in
coding	within	your	team,	and	you	can’t	allow	somebody	outside	of	your	team	to
read	your	code.	In	that	case,	share	your	code	with	your	team,	and	ask	them	for
feedback.	Even	if	you	are	the	best	coder	in	your	team,	other	members	might	find
something	that	you	have	done	wrong.	Fresh	eyes	may	be	able	to	catch	mistakes.
Code	review	is	very	important	when	it	happens	during	the	early	stage	of	your
career.	This	step	will	help	to	improve	your	skills	as	a	coder.	The	following	are
the	steps	you	should	take	to	make	sure	that	your	code	is	successfully	reviewed.

1.	 Once	you	have	finished	writing	your	code	go	through	debugging,
development,	and	testing.	This	will	help	you	make	sure	that	you
haven’t	made	any	mistakes.	Then	you	can	ask	your	peers	to	review
your	code.

2.	 Forward	your	teammates	a	link	to	your	code.	Make	sure	you	don’t
ask	them	to	review	a	lot	of	scripts	at	one	time.	Send	them	one,	once
they	finish,	send	them	another.	The	comments	they	provide	you	for
your	first	script	may	work	for	the	others.	If	applicable,	make	sure	that
you	make	those	changes	to	all	of	your	scripts	before	you	send	them
another	one.

3.	 Each	time	you	send	out	an	iteration,	give	them	a	week	or	so	to	read	it
and	test	it.	Make	sure	that	you	give	them	all	of	the	necessary

information	to	test	your	code	such	as	limitations,	sample	inputs,	and
so	on.

4.	 Meet	everybody	and	get	their	suggestions.	It’s	important	to	remember
that	you	don’t	have	to	use	all	of	their	suggestions.	Pick	the	ones	that
you	believe	will	make	your	code	better.

5.	 Repeat	this	process	until	you	and	the	team	are	satisfied.	Now	you
need	to	fix	and	improve	your	code	during	the	first	three	to	four,
iterations.	Otherwise,	it	may	seem	like	you	don’t	know	what	you’re
doing.

The	rest	of	this	chapter	is	going	to	introduce	you	to	seven	programming
languages	that	data	scientists	can	use.
We’ll	go	deeper	in	Python	in	a	later	chapter,	but	for	now	here’s	a	quick	overview.

Python
Python	was	created	by	Guido	van	Rossum	in	the	late	1980s	and	is	an	interpreted
high-level	programming	language	that	is	typically	used	for	general-purpose
programming.
The	design	of	Python	makes	it	more	readable,	notably	by	making	use	of	more
whitespace.	It	gives	a	programmer	the	chance	to	make	clear	programs	on	small
and	large	scales.	Van	Rossum	is	still	the	main	author	of	Python.
Python	supports	structured	and	object-oriented	programming,	and	many	of	its
features	will	support	aspect-oriented	and	functional	programming	as	well	as
metaobjects.	There	are	a	lot	of	paradigms	that	are	supported	through	extensions,
which	includes	logic	programming	and	design	by	contract.
Python	has	dynamic	typing,	and	it	uses	a	combination	of	cycle-detecting	garbage
collectors	and	reference	counting	to	manage	memory.
Instead	of	building	all	of	the	functionality	into	the	core,	Python	was	made	in	a
way	to	make	it	highly	extensible.	Having	this	compact	modularity	has	caused	it
to	be	a	popular	means	of	adding	in	interfaces	to	existing	applications	that	are
programmable.	Van	Rossum	wanted	to	create	a	small	core	language	with	a	large
library	and	make	an	easy	interpreter.	His	desire	came	from	how	frustrated	he	was
with	ABC,	which	used	a	very	different	approach.

SQL
This	is	a	standard	language	that	is	used	for	manipulating	and	accessing
databases.	SQL	means	Structured	Query	Language.	It	became	a	standard	of
ANSI	in	1986,	and	ISO	in	1987.
SQL	is	able	to:

Set	permissions	on	views,	tables,	and	procedures.
Create	views	in	a	database.
Make	stored	procedures	in	a	database.
Make	new	tables	in	a	database.
Make	new	databases.
Delete	records	from	databases.
Update	records	in	databases.
Insert	records	in	databases.
Retrieve	data	from	databases.
Execute	queries	against	databases.

While	SQL	is	a	standard	for	ANSI	and	ISO,	there	are	several	versions	of	this
language.	For	it	to	be	compliant	with	the	standard	of	ANSI,	it	has	to	support	the
major	commands	like	WHERE,	SELECT,	INSERT,	UPDATE,	and	DELETE.
The	Relational	Database	Management	System,	RDBMS,	is	the	basis	for	SQL	It
also	works	as	the	basis	for	most	modern	database	systems	like	Microsoft	Access,
MySQL,	Oracle,	DB2,	IBM,	and	MS	SQL	Server.	The	RDBMS	data	is	stored
within	tables.	These	tables	are	a	collection	of	data	entries	that	are	related	and
made	up	of	rows	and	columns.

R
R	is	a	programming	language	and	environment	used	for	graphics	and	statistical
computing.	It’s	a	GNU	project,	which	works	like	an	S	language	and	environment
that	was	created	at	Bell	Laboratories	by	John	Chambers	and	his	colleagues.	R	is
sometimes	seen	as	different	implementation	of	S.	There	are	a	lot	of	important
differences	between	the	two,	but	for	the	most	part,	S	code	can	run	unchanged
through	R.
R	gives	a	user	a	large	variety	of	statistical	and	graphical	techniques,	such	as
clustering,	classification,	time-series	analysis,	classical	statistical	tests,	linear	and
nonlinear	modeling,	for	example.	S	language	is	used	more	often	as	a	way	to
research	statistical	methodology,	and	R	gives	you	an	Open	Source	route	to	work
with	the	activity.
One	of	the	biggest	strengths	of	R	is	the	ease	with	which	creating	a	well-designed
plot	can	be	done,	including	mathematical	formula	and	symbols	when	needed.	R
has	thoroughly	taken	care	of	the	defaults	for	minor	choices	in	the	graphics,	but
the	user	still	has	full	control.
The	R	environment	includes:

A	well-developed,	effective,	and	simple	programming	language	that
includes	output	and	input	facilities,	user-defined	recursive	functions,
loops,	and	conditionals.
Graphical	facilities	that	are	needed	for	data	analysis	and	displays	it
on-screen	or	on	a	hard	copy.
A	large,	integrated,	and	coherent	collection	of	intermediate	tools	for
data	analysis.
A	suite	of	operators	that	are	used	for	calculations	on	arrays,
especially	matrices.
Effective	data	storage	and	handling.

SAS
SAS	stand	for	Statistical	Analysis	System.	It	is	a	software	suite	that	was	created
for	advanced	analytics,	predictive	analytics,	data	management,	business
intelligence,	and	multivariate	analyses.
SAS	was	first	created	at	NC	State	between	1966	and	1976.	It	was	further
developed	throughout	the	1980s	and	1990s	when	new	statistical	procedures,
more	components,	and	JMP	were	added.
SAS	is	able	to	retrieve,	mine,	manage,	and	alter	data	from	several	different
sources,	and	analyze	the	information.
In	2002	Text	Miner	software	was	added.	This	software	analyzes	text	data	such	as
patterns	in	emails.	In	a	free	version	that	was	introduced	in	2010	for	students,
media	analytics	for	social	media	monitoring	was	added.

Java
Java	works	as	a	computer	programming	language,	and	is	object-oriented,	class-
based,	concurrent,	and	is	designed	to	use	as	little	implementation	effort	as
possible.	It	is	made	so	that	developers	are	able	to	“write	once,	run	anywhere.”
This	means	that	Java	code	can	be	run	on	all	platforms	that	support	Java	without
having	to	recompile	it.
James	Gosling,	at	Sun	Microsystems,	was	the	original	developer	of	Java.	It	was
originally	released	in	1995	as	one	of	the	core	parts	of	Sun	Microsystems.	A	lot	of
its	syntax	is	derived	from	C++	and	C,	but	it	doesn’t	have	very	many	low-level
facilities.
There	are	five	main	goals	that	Java	was	created	to	achieve.	It	must	be:

1.	 familiar,	simple,	and	object-oriented.
2.	 secure	and	robust.
3.	 portable	and	architecture-neutral.
4.	 high-performance	execution.
5.	 dynamic,	interpreted,	and	threaded.

Scala
Scala	mixes	functional	and	object-oriented	programming	into	a	single	high-level
and	concise	language.	The	static	types	of	Scala	help	remove	bugs	in	complex
applications.	It	also	has	JavaScript	and	JVM	runtimes,	which	will	allow	you	to
build	high-performance	systems	that	have	easy	access	to	the	large	library
ecosystem.
The	Scala	language	uses	several	different	features,	such	as:

String	interpolation
Implicit	classes
Universal	traits	and	value	classes

Scala	uses	futures,	which	provides	you	with	a	way	to	reason	running	operations
in	parallel	that	is	non-blocking	and	efficient.	Futures	work	as	a	placeholder
object	for	a	value	that	you	don’t	have	yet.	Typically,	the	future’s	value	is
provided	concurrently	and	can	be	used	at	the	same	time.

Julia
Julia	is	another	programming	language	that	is	high-level	and	high-performance
and	is	used	for	numerical	computing.	It	provides	a	sophisticated	compiler,
extensive	math	library,	numerical	accuracy,	and	distributed	parallel	execution.
The	base	library,	which	is	mainly	written	in	Julia,	will	also	use	mature	and	best-
of-breed	open	source	Fortran	and	C	libraries	to	help	with	string	processing,
signal	process,	random	number	generation,	and	linear	algebra.
Programs	with	Julia	are	created	around	several	dispatches,	which	will	allow
user-defined	and	built-in	functions	that	can	be	overloaded	for	several	argument
combinations.
Some	of	the	main	features	of	Julia	include:

An	open	source	and	free	MIT	license.
Support	for	Unicode,	which	includes	UTF-8.
Extensible	and	elegant	promotions	and	conversions	for	numeric	and
other	types.
Automatic	generation	of	specialized	and	efficient	code	for	several
types	of	arguments.
User-defined	types	which	are	quick	and	compact.
Coroutines.
It	was	created	from	distributed	and	parallelism	computation.
Powerful	shell-like	capabilities	for	managing	processes.
The	ability	to	directly	call	C	functions.
The	ability	to	call	Python	functions.
Lisp-like	macros,	as	well	as	other	metaprogramming	facilities.
A	built-in	package	manager.
Great	performance	that	is	almost	like	languages	such	as	C
Dynamic	type	systems.
Multiple	dispatches.

How	to	Work	with	Data
“No	great	marketing	decisions	have	ever	been	made	on	qualitative	data.”	–
John	Sculley	

Once	you	have	your	data,	you	have	to	work	with	it.	In	this	chapter,	we	will	go
over	the	different	ways	to	work	with	data	such	as	cleaning,	munging,	rescaling,
and	manipulating.

Data	Cleaning	and	Munging
Data	cleaning	means	that	you	get	rid	of	any	information	that	doesn’t	need	to	be
there	and	clean	up	any	mistakes.	Your	approach	is	going	to	depend	on	the	data
you	have	gathered,	and	what	your	end	goal	is.
Here	is	a	general	guideline	on	how	to	clean	data.
Does	what	you’re	reading	make	sense?
First,	you	have	to	look	over	your	data.	If	your	dataset	is	fairly	large,	look	at	the
top	20	rows,	the	bottom	20	rows,	and	then	another	random	20-row	sample.	The
following	are	some	questions	that	you	need	ask	yourself	about	the	data.

Does	this	data	make	sense?
Does	the	data	you’re	looking	at	match	the	column	labels?

Example:	Do	you	have	names	in	the	column	labeled	name,
addresses	in	your	column	for	addresses,	phone	numbers	in	the
numbers	column?	Or	do	you	have	different	data	in	the
columns.

Does	your	data	follow	the	rules	for	its	field?
Example:	Are	the	names	written	in	alphabetical	letters,	Josh,	or
does	it	contain	numbers	like?
Example:	Is	the	phone	number	10	digits,	3331234567,	or	not,
1234567?

After	you	compute	summarizes	statistics	for	your	numerical	data,
does	it	make	sense?

Example:	When	you	have	time	elapsed	data,	is	your	minimum
value	negative?
Example:	If	you	are	working	with	annual	wages,	is	the	max
value	an	outlandish	number?

How	many	of	the	values	are	nulls?	Is	the	number	of	nulls
acceptable?	Can	you	find	a	pattern	to	the	null	values?
Do	you	see	duplicates,	and	are	they	okay?

If	you	have	enough	information,	you	need	to	correct	the	values.
Once	you	have	noticed	all	the	problems	within	your	data,	start	to	think	about
ways	to	fix	it.	There	are	some	corrections	that	will	be	obvious,	such	as	a	name
being	written	like	J4osh.	You	know	it	should	be	Josh.
However,	there	could	be	corrections	that	aren’t	as	obvious.	Let’s	say	that	your
data	deals	with	more	than	500,000	people	and	somebody	has	the	name	of	Brick.
You	may	think	the	name	is	a	type	and	that	it	should	say	Rick.	You	could	make
the	change	to	this	if	you	have	the	information	that	it	is,	in	fact,	an	error,	such	as
you	know	the	person	that	the	data	belongs	to.	But	unless	you	do	have	a	lot	of
confidence,	you	probably	shouldn’t	change	that	type	of	difference,	or	you	could
end	up	making	a	typo.
Try	to	figure	out	if	the	data	issues	have	any	logic	to	them	and	make	corrections
needed.	If	your	system	only	allows	phone	numbers	with	numbers	and	no	special
characters,	but	your	data	has	phone	numbers	written	like	so	(333)123-4567,	you
will	be	able	to	use	Excel	or	Python	to	find	and	get	rid	of	the	dashes	and
parentheses.
If	you	are	able	to,	you	can	use	this	logic	to	fill	in	data	for	the	null	values.
However,	if	you’re	not	able	to	find	logic,	there	are	different	ways	that	you	could
address	filling	in	any	missing	data.	One	of	the	common	ways	to	do	this	is	by
using	the	median	or	average	of	the	column	to	fill	in	the	blank	spots,	which	is
quite	easy	but	could	affect	your	data	distribution.	There	are	also	some
complicated,	but	statistically	solid,	methods	to	fill	in	your	blank	spots,	like
MICE.	You	may	even	want	to	create	a	column	of	metadata	that	indicates	the
values	that	are	imputed	and	the	values	that	are	organic.	No	matter	which	method
you	choose,	if	you	have	a	huge	number	of	nulls	for	a	column,	it	may	be	in	your
best	interest	to	forgo	using	it	in	your	analysis.
Make	use	of	the	tools	that	makes	sense.
When	you	decide	to	think	about	the	tool	that	you	need	to	reach	your	goal	the
right	tool	can	end	up	saving	you	time	from	having	to	do	things	over	and	over
again.	Each	tool	has	its	own	pros	and	cons,	so	here	is	a	bit	of	a	rule	of	thumb.

You	can	use	Excel	when:
Defining	the	logical	pattern	for	cleaning	your	data	is	hard	to	figure
out,	and	you	have	to	clean	it	manually.
You	have	a	logical	pattern	in	cleaning	the	data,	and	you	can	easily
clean	it	with	Excel	functions.
The	job	needs	to	be	done	quick	and	easy.
You	have	less	than	a	million	records.

You	could	use	Python	or	other	scripting	languages	when:
You	have	a	logical	pattern	for	cleaning,	but	it	would	be	hard	to	do
with	Excel	functions.
The	job	will	be	done	on	a	repeating	basis.
You	have	to	document	the	process.

The	tools	that	you	are	more	comfortable	with	will	also	play	a	role	in	this.
Start	communicating	with	your	source.
If	you	discover	that	you	can’t	read	something	in	your	data,	don’t	be	afraid	to	call
somebody	or	email	them.	For	example,	if	you	were	given	data	that	dealt	with
information	from	every	county	in	a	state,	and	you	had	to	have	the	county	names,
but	all	the	data	gives	you	are	number	codes,	you	should	call	the	person	who	sent
you	the	data.	They	can	shed	some	light	on	how	they	organized	their	information.
This	is	even	more	so	true	if	you	are	the	client	of	the	data	source	because	you	are
guaranteed	to	receive	clear	information.	Communicating	with	them	will	save
you	a	lot	of	time	and	heartache.
This	is	one	of	the	main,	and	most	basic,	ways	of	cleaning	your	data,	but	it	isn’t
the	only	approach	you	could	take.	The	more	experienced	you	become,	the	more
creative	you	can	become	in	cleaning	your	data.
Data	munging,	sometimes	known	as	data	wrangling,	is	the	process	of	manually
changing	or	mapping	data	in	one	raw	form	into	a	different	form	that	will	gives
you	a	more	convenient	use	of	your	data	through	semi-automated	tools.
This	could	mean	that	you	modify	the	values	into	a	column	in	a	particular	way	or
grouping	several	columns	together.	The	need	for	data	munging	is	typically	from

poorly	presented	or	collected	data.	Data	that	has	been	entered	manually	normally
have	a	lot	of	errors	and	the	data	that	is	collected	through	websites	are	normally
optimized	to	be	shown	on	websites	and	not	aggregated	and	sorted.
The	next	steps	we’re	going	to	go	through	will	be	looking	at	how	to	mung	data.	It
is	important	that	you	don’t	try	to	follow	along	with	these	steps	until	you	do	the
Python	setup	that	we	will	go	through	in	the	next	chapter.	The	setup	in	the	next
chapter	will	get	you	t	where	you	need	to	be	to	start	these	steps.

1.	 Look	for	missing	values	in	your	dataset.
You	can	continue	using	your	own	data	set	for	this,	but	for	the	purpose	of	the
tutorial,	I	will	be	using	random	data	information	so	that	I	can	be	more	direct	with
my	explanation.	We’re	going	to	start	by	looking	at	Cabin.	When	you	first	look	at
the	variable,	it	will	leave	you	with	the	impression	that	there	may	be	too	many
nulls	in	the	set	of	data.	Let’s	check	how	many	nulls	are	in	the	dataset.
“sum(df	[‘Cabin’].isnull())”
This	command	will	tell	you	the	amount	of	missing	values,	or	the	values	that	are
null.	With	this,	you	should	get	a	return	of	687,	which	means	there	are	a	lot	of
missing	values	and	you	should	drop	this	variable.
Now	we	need	to	look	at	Ticket.	The	variable	Ticket	looks	like	it	has	a	mixture	of
text	and	numbers,	and	there	doesn’t	seem	to	be	any	information.	We	should	drop
Ticket	too.
“df	=	df.drop([‘	Ticket’,	‘Cabin’],	axis=1)”

2.	 Filling	in	the	missing	age	values.
There	are	a	lot	of	different	ways	for	you	to	fill	in	the	missing	age	values.	The
simplest	would	be	to	replace	it	with	the	mean,	and	can	be	done	like	this:
“meanAge	=	np.mean(df.Age)
df.Age	=	df.Age.fillna(meanAge)”
The	other	thing	you	could	do	is	to	create	a	supervised	learning	model	that	could
predict	ages	based	on	all	the	other	variables,	and	it	would	then	use	age	as	well	as
the	other	variables	to	predict	survival.
Since	we	are	trying	to	learn	data	munging,	it	would	be	best	if	we	take	an

approach	that	is	somewhere	between	these	two	extremes.	The	main	hypothesis
would	that	the	information	in	pclass,	name,	and	gender	combined	is	able	to	give
us	the	information	we	need	to	figure	out	the	missing	age	values.
The	following	are	the	steps	that	you	need	to	take	to	work	this	hypothesis:	Step
1:	Extract	information	from	Name
We	are	going	to	create	a	function	that	will	extract	the	information	in	Name	so
that	it	is	written	as	such:	Family_Name,	Salutation.	First	Name
“def	name_extract(word):
return	word.split(‘,’)	[1].split(‘.’)	[0].strip()”

With	this	code,	it	would	change	“Jain,	Mr.	Kunal”	to	Mr.	and	“Jain,	Miss.
Jenika”	to	Miss.	Then	we	can	apply	this	function	so	that	it	will	change	the	whole
column.
“df2	=	pd.DataFram({	‘Salutation’	:df[‘Name’].apply(name_extract)})”
After	we	have	the	salutations,	we	can	look	at	how	they	are	distributed.	We	will
now	use	the	groupby	after	we	merge	the	DataFrame	df2	with	DataFrame	df:	“df
=	pd.merge(df,	df2,	left-index	=	True,	right_index	=	True)	#	merges	on	index
temp1	=	df.groupby(‘Salutation’).PassengerId.count()	print	temp1”
The	output	you	should	get	is:
Capt	1
Col	2
Don	1
Dr	7
Jonkheer	1
Lady	1
Major	2
Master	40
Miss	182
Mlle	2
Mme	1
Mr	517

Mrs	125
Ms	1
Rev	6
Sir	1
The	Countess	1
dtype:	int64
From	the	information,	you	can	tell	that	there	are	four	main	salutations:	Master,
Mr,	Miss,	and	Mrs.	The	other	salutations	are	a	lot	less	common.	This	means	that
we	will	group	all	of	the	remaining	salutations	into	one	salutation	named	others.
To	do	this,	we	can	use	the	same	approach	that	we	did	to	get	all	of	the	salutations.
“def	group_salutation(old_salutaion):
If	old_salutation	==	‘Mr’:
Return(‘Mr’)
Else:
If	old_salutation	==	‘Mrs’:
Return(‘Mrs’)
Else:
If	old_salutation	==	‘Master’:
Return(‘Master’)
Else:
If	old_salutation	==	‘Miss’:
Return(‘Miss’)
Else:
Return(‘Others’)
Df3	=	pd.DataFram({‘New_Salutation’	:df[‘Salutation’]	.apply	(
group_salutation)})	Df	=	pd.merge(df,	df3,	left_index	=	True,	right_index	=
True)	Temp1	=	df3.groupby(‘New_Salutation’).count()	Temp1
Df.boxplot(column=	‘Age’,	by	=	‘New_Salutation’)”
You	should	then	receive	a	list	of	new	salutations	that	would	look	like	this:
Master	40

Miss	182
Mr	517
Mrs	125
Others	27
Step	2:	Create	a	simple	grid
We	now	want	to	make	a	Pivot	table	that	will	show	us	the	median	values	of	the
class,	gender,	and	age.	We	will	define	a	function	that	will	give	use	the	values	of
our	chosen	cells	while	also	filling	in	all	of	the	missing	ages.
“	table	=	df.pivot_table(values=	‘Age’,	indext=[‘New_Salutation’],	columns=[
‘Pclas’,	‘Sex’],	aggfunc=np.median)	#	Define	function	to	return	value	of	this
pivot_table	Def	fage(x):
Return	table[x[‘Pclass’]][x[‘Sex’]][x[‘New_Salutation’]]
#	Replace	missing	values
Df[‘Age’].fillna(df[df[‘Age’].isnull()].applu(fage,	asix=1),	inplace=True)”
This	will	give	you	a	pretty	good	way	to	add	in	the	missing	age	values.
How	should	you	treat	the	outliers	in	the	distribution	of	fare?
As	we	figured	the	means	of	fare	match	up	fairly	well	with	Pclass.	However,
there	are	some	extreme	outliers.	There	is	one	point	of	data	that	probably	grabs
your	attention,	the	fare	of	512	for	class	one.	Chances	are	this	is	an	error.	There
are	several	ways	to	change	the	data.	Replace	it	with	the	mean	or	median	of	class
one,	or	you	could	also	change	the	value	with	the	second	highest	value,	which
will	relate	closer	to	the	other	points	of	data.
You	can	decide	which	one	to	chose	and	replace	the	respective	values.	The
commands	work	similarly	to	the	ones	we’ve	already	went	through.
You	now	have	a	set	of	data	that	you	can	use	to	build	a	predictive	model.

Data	Manipulation
Data	manipulation	is	where	you	take	your	data	and	change	it	to	try	and	make	it
easier	to	read,	or	to	make	it	more	organized.	For	example,	you	could	organize	a
log	of	data	in	alphabetical	order,	which	would	make	the	entries	a	lot	easier	to
read.	Data	manipulation	is	typically	used	for	web	server	logs	so	that	there	are
more	website	owners	that	can	view	the	most	popular	pages	and	traffic	sources.
People	in	accounting	fields	or	other	jobs	that	tend	to	work	a	lot	with	numbers
will	often	manipulate	data	so	that	they	can	figure	out	their	costs	of	products,	how
well	the	merchandise	is	selling	each	month	or	week,	potential	tax	obligations,	or
trends	in	sales.	Stock	market	analysts	will	typically	use	data	manipulation	so	that
they	can	predict	trends	within	the	stock	market,	and	how	their	stocks	could	end
up	performing	in	the	future.
Computers	are	also	able	to	use	data	manipulation	to	display	information	to	the
users	in	a	way	that	is	more	meaningful,	based	on	the	software	programs	code,
data	formatting,	or	web	page	that	is	defined	by	the	user.

Data	Rescaling
When	it	comes	to	rescaling	data,	you	will	multiply	every	member	of	a	set	of	data
by	a	constant	j.	This	means	that	you	transform	each	number	y	to	f(y),	where
f(y)=jy,	and	j	and	y	are	real	numbers.	Rescaling	is	meant	to	change	the	data
spread	and	the	position	of	the	data	points.	What	will	stay	unchanged	is	the
distribution	shape	and	the	curve	attributes.
How	will	the	variance,	standard	deviation,	and	mean	change	when	you	rescale
data?
The	standard	deviation,	median,	and	mean	are	rescaled	using	the	same	constant.
Your	data	is	multiplied	by	the	scaling	constant	(y)	in	order	to	figure	out	your
new	standard	deviation,	median,	or	mean.

F(sd)	=	y*sd
F(m)	=	ym
F(med)	=	y*med

The	variance	(sd^2)	is	changed	by	multiplying	the	squared	scaling	constant.
F(sd^2)	=	y^2	*	sd^2

Please	note	that	the	z-scores	and	percentile	values	aren’t	changes	by	rescaling.
Since	these	numbers	are	calculated	through	a	ratio,	the	scaling	constant	ends	up
getting	canceled	out.
Scaling	is	typically	used	if	you	are	looking	to	change	your	data	measurement
types.	This	could	be	from	millimeters	to	kilometers	or	from	square	inches	to
acres.	You	can	also	use	this	to	compare	two	different	datasets	that	are	typically
incomparable	because	they	typically	use	different	scales.
Here’s	an	example:	Let’s	assume	that	teacher	Y	grades	their	students	using	a
100-point	system,	which	teacher	Z,	who	teaches	the	same	subject,	grades	their
students	using	a	170	point	system.	We	can	assume	that	the	difficulty	of	the
homework	and	tests	are	standardized	between	both	classes.	To	figure	out	which
one	of	the	classes	are	doing	better,	you	could	rescale	class	Y	by	mapping	the
members	of	the	set	of	data	a	to	f(a)	where	f(a)=1.7a.

To	change	a	student’s	grade	in	class	Y	of	a	99	to	class	Z’s	grad,	you
would	take	99*1.7=	153.
If	there	were	a	mean	of	86,	it	would	change	to	86*1.7=	146.2.
You	could	rescale	a	standard	deviation	of	15	to	15*1.7=	25.5.

If	a	student	had	grades	that	put	them	in	99th	percentile	before	you

scaled	it,	they	would	still	have	a	grade	in	the	99th	percentile	after	you
scaled	it.

Python
“Abstraction	is	one	of	those	notions	that	Python	tosses	out	the	window,	yet
expresses	very	well.”	–	Gordon	McMillian

Python	has	become	very	popular	language	for	data	analysis.	To	help	you	see
why	it	is	such	a	popular	option,	here	are	a	few	points:

It	could	end	becoming	the	common	language	for	data	science	and	for
the	production	of	analytics	products	in	a	web-based	setting.
Extremely	easy	language	to	learn.
Has	a	great	online	community.
It	is	open	source	and	free	to	install.

That	being	said,	it	does	have	its	drawbacks:
Its	language	is	interpreted	and	not	complied.	This	means	that	it	could
end	up	taking	up	more	CPU	time.	However,	because	it	saves	time
during	programming	by	being	easy	to	learn,	it	is	still	the	better

option.
One	of	the	most	debated	topics	when	it	comes	to	Python	is	between	version	2.7
or	3.4.	If	you	are	a	beginner,	you	will	come	across	this	debate.	When	you	get
down	to	it,	there	isn’t	actually	a	right	or	wrong	choice.	It	will	depend	on	what
you	need	and	your	situation.	We’ll	go	through	some	pointers	of	each	to	help	you
figure	out	which	you	would	prefer.
Python	2.7	has:

A	great	support	community.	This	is	especially	important	when	you
are	just	starting	out.	This	version	of	has	been	in	use	for	over	15	years.
There	is	a	large	number	of	third-party	libraries	available.	Even
though	most	of	the	libraries	have	been	made	to	support	3.x,	there	are
still	a	large	number	of	modules	that	will	only	work	with	the	2.x
versions.	If	you	think	you	will	be	using	Python	for	any	specific
applications	such	as	web-development	where	you	would	be	using	a
lot	of	external	modules,	you	would	be	better	sticking	with	2.7.
There	are	some	features	of	3.x	versions	that	have	backward
compatibility	so	that	they	are	able	to	be	used	with	2.7.

Python	3.4	has	these	benefits:
It	is	faster	and	cleaner.	The	developers	of	Python	have	fixed	some	of
the	glitches	and	a	few	drawbacks	so	that	it	can	create	a	stronger
foundation	for	future	use.	Initially	these	things	may	not	seem	that
relevant,	but	eventually,	they	will	become	important.
Python.	2.7	was	the	last	version	of	the	2.x	Python	family.	Eventually,
you	will	have	to	change	to	the	3.x	versions.	Python	3	has	introduced
stable	versions	over	the	last	five	years,	and	they	are	going	to	continue
doing	this.

There	isn’t	really	a	clear	winner	of	the	two,	but	the	more	important	thing	is	that
you	should	learn	the	Python	language.

Installing	Python
There	are	two	ways	that	you	can	install	Python:

1.	 Python	can	be	downloaded	directly	from	the	project	site,	and	then
you	can	install	the	individual	libraries	and	components	you	want.

2.	 You	could	also	install	and	download	a	package,	which	will	come	with
libraries	already	installed.	One	option	would	be	to	download
Anaconda.	You	could	also	use	Enthought	Canopy	Express.

The	second	method	will	give	you	a	hassle-free	installation,	so	it	is	the	best
option	for	beginners.	The	problem	with	doing	it	this	way	is	that	you	will	have	to
wait	for	the	complete	package	to	be	upgraded,	even	if	you	just	want	to	get	the
latest	the	version	of	one	of	the	libraries.	This	wouldn’t	be	a	problem	unless	you
start	performing	cutting-edge	statistical	research.
After	you	have	installed	Python,	you	will	find	several	options	for	picking	your
environment.	There	are	three	main	common	options:

1.	 iPython	notebook,	which	is	similar	to	markdown	in	R.
2.	 IDLE,	which	is	the	default	environment.
3.	 Terminal	or	Shell	based.

Picking	your	environment	will	depend	on	what	it	is	that	you	will	need.	I
recommend	iPython	Notebooks.	It	will	provide	you	with	a	lot	of	amazing
documenting	features	while	you	are	writing	your	code,	and	you	can	run	the	code
in	blocks	instead	of	line	by	line.	For	the	rest	of	this	chapter,	I	will	be	referring	to
iPython	environment.
To	start	out	with	you	can	use	Python	as	a	calculator	like	this:	“	In	[1]:	2	+	3
Out	[1]	:	5	“
Let’s	go	over	a	few	notes:

The	iPython	notebook	can	be	started	by	typing	“ipython	notebook”	in
your	terminal/cmd,	depending	on	your	OS.
Name	your	iPython	notebook	by	selecting	the	name	–	UntitledO.
The	interface	will	give	you	In	[*]	for	the	input	and	Out	[*]	for	the

output.
A	code	can	be	executed	by	hitting	“ALT	+	Enter”	or	“shift	+	enter”	if
you	want	add	in	another	row.

Before	we	really	get	into	the	problem-solving	aspects	of	Python,	let’s	step	back	a
bit	and	make	sure	that	you	understand	all	of	the	basics.	Conditional	constructs,
data	structures,	and	iteration	form	the	crux	of	all	programming	languages.	When
it	comes	to	Python,	it	includes	if-else,	while-loop,	for-loop,	dictionaries,	tuples,
strings,	lists,	and	so	on.	Let’s	go	through	a	few	of	these.

Python	Libraries	and	Data	Structures
	
The	following	are	some	of	the	data	structures	that	you	can	use	in	Python.	It	is
important	that	you	are	familiar	with	these	so	that	you	can	use	them	in	the
appropriate	way.
	

Lists	–	This	is	one	of	Python’s	most	versatile	data	structures.	You	can
simply	define	a	list	by	writing	out	commas	that	are	separated	by
different	values	in	square	brackets.	The	lists	could	have	different
types	of	items,	but	usually,	the	items	will	be	the	same	type.	The	lists
in	Python	are	individual	and	mutable	elements	of	a	list	can	to	be
changed.

	
The	following	are	list	examples	and	how	to	access	them.
	
“	In	[1]	:	squares_lists	=	[0,	1,	4,	9,	16,	25]
In	[2]	:	square_list
Out	[2]	:	[0,	1,	2,	9,	16,	25]
In	[3]	:	squares_list[0]
Out	[3]	:	0
In	[4]	:	squares_list	[2	:	4]
Out	[4]	:	[4,	9]
In	[5]	:	squares_list	[-2]
Out	[5]	:	16	“
	

Strings	–	You	can	define	a	string	with	single,	double,	or	triple
inverted	commas.	Strings	that	are	enclosed	with	triple	quotes	are	able
to	span	over	several	lines	and	are	often	used	within	docstrings,	which
is	Python’s	way	to	document	functions.	A	backslash	is	used	as	an

escape	character.	These	strings	in	Python	are	often	immutable,	so	you
are	unable	to	change	up	the	parts	of	the	string.

	
“	In	[6]	:	greeting	=	‘Hello’
Print	greeting[1]
Print	len(greeting)
Print	greeting	+	‘World’
In	[7]	:	stmt	=	r	‘\n	is	a	newline	character	by	default.	‘
Print	stmt
In	[8]	:	greeting[1	:]	=	‘1’	“
	

Tuples	–	You	can	show	a	tuple	by	a	group	of	values	that	are	separated
by	commas.	These	are	also	immutable,	and	their	outputs	will	be
encompassed	by	parentheses.	This	is	so	that	the	nested	tuples	will	be
correctly	processed.	Even	though	these	are	immutable	functions,	they
are	still	able	to	house	mutable	data	if	you	need	them	to.

	
Because	tuples	can’t	be	changed,	and	they	are	immutable,	it	makes	them	a	lot
faster	when	they	are	processed,	especially	if	they	are	compared	to	lists.	This
means	that	if	it	is	unlikely	for	your	list	to	change,	you	should	think	about	using
tuples	instead	of	using	a	list.
	
“	In	[9]	:	tuple_example	=	0,	1,	4,	9,	16,	25
In	[10]	:	tuple_example
Out	[10]	:	(0,	1,	4,	9,	16,	25)	In	[11]	:	tuple_example[2]
Out	[11]	:	4
In	[12]	:	tuple_example[2]	=	6	“
	

Dictionary	–	This	is	an	unordered	group	of	key:	value	pairs.	It
requires	that	your	keys	are	unique,	which	means	within	a	single

dictionary.	Using	a	pair	of	braces	with	make	and	empty	dictionary.
	

“	In	[20]	:	extensions	=	(‘Dale’	:	9073,	‘Page’	:	9128,	‘Small’	:	9223,	‘Nate’	:
9330)	extensions	Out	[20]	:	{	‘Dale’	:	9073,	‘Nate’	:	9330,	‘Page’	:	9128,	‘Small’
:	9223}
In	[21]	:	extensions	(‘Matt’)	=	9150	extensions	Out	[21]	:	{‘Dale’	:	9073,	‘Matt’
:	9150,	‘Page’	:	9128,	‘Small’	:	9223,	‘Nate’	:	9330}
In	[22]	:	extensions.keys	{}
Out	[22]	:	(‘Small’,	‘Page’,	‘Dale’,	‘Matt’,	‘Nate’)	“
	

Conditional	and	Iteration	Constructs
Like	the	majority	of	other	programming	languages,	Python	uses	a	FOR-loop,
which	is	one	of	the	most	commonly	used	methods	for	iteration.	The	syntax	is
simple.
“	for	I	in	[Python	Iterable]:
Expression(i)	“

In	the	section	that	says	python	iterable,	you	can	fill	in	a	tuple,	list	or	any	other
data	structures.	Here	is	an	example	that	will	give	you	the	factorial	of	a	number.
“	fact=1
For	I	in	range(1,	N	+	1):
Fact	*=	i	“

When	it	comes	to	a	conditional	statement,	you	will	use	these	to	execute	code
fragments	that	are	based	upon	a	condition.	The	if-else	is	the	most	commonly
used	construct,	and	you	can	use	this	syntax:	“	if	[condition]:
execution	if	true

Else:
execution	if	false	“

You	could	use	this	syntax	if	you	want	to	print	out	whether	the	number	S	was	odd
or	even.
“	if	S%2	==	0:
Print	‘Even’

Else:
Print	‘Odd’	“

Now	that	you	have	a	decent	understanding	of	some	Python	fundamentals,	we
can	dive	a	little	be	further.	Think	about	having	to	perform	these	types	of	tasks:

1.	 Access	web-pages
2.	 Make	statistical	models
3.	 Plot	histograms	and	bar	charts
4.	 Find	the	root	of	quadratic	equations

5.	 Multiply	two	matrices
If	you	are	trying	to	come	up	with	code	from	scratch,	it	will	end	up	becoming	a
nightmare,	and	you	will	end	up	leaving	Python	after	a	day	or	two.	But	we’re	not
going	to	worry	about	those	things	at	the	moment.	There	are	a	lot	of	predefined
libraries	that	you	can	directly	add	to	your	code	and	make	things	a	lot	easier.
Here’s	an	example,	if	you	take	our	factorial	example	from	earlier,	that	can	be
changed	into	a	single	step.
“	math.factorial	(S)	“
In	order	for	that	to	work,	you	will	have	to	make	sure	that	you	have	the	math
library.	Now	would	be	a	good	time	to	explore	the	libraries.

Python	Libraries
This	first	thing	you	have	to	know	how	to	do	when	it	comes	to	libraries	is	to
import	them	into	your	environment.	There	are	a	few	different	ways	you	can	do
this.
“	import	math	as	m
From	math	import	*	“
With	the	first	line,	you	will	have	defined	a	name	m	to	library	math.	It	is	now
possible	to	use	different	functions	from	your	math	library	by	using	the	name	that
you	gave	it:	m.factorial().
In	the	second	line,	you	will	import	the	whole	name	with	math,	meaning	that	you
are	able	to	directly	use	factorial()	without	having	to	refer	to	math.
The	following	libraries	are	those	that	you	will	need	for	data	analysis	and
scientific	computations:

NumPy	–	This	stands	for	Numerical	Python.	The	best	feature	that
comes	with	NumPy	is	n-dimensional	array.	This	library	will	give	you
some	basic	linear	algebra	functions,	advanced	random	number
capabilities,	Fourier	transforms,	and	applications	for	integrating	with
other	low-level	programming	languages	such	as	C++,	C,	and	Fortran.
SciPy	–	This	stands	for	Scientific	Python.	This	is	an	add-on	to
NumPy.	This	is	an	extremely	useful	library	when	it	comes	to	several
different	high-level	engineering	and	science	modules	such	as	Sparse
and	optimization	matrices,	linear	algebra,	and	discrete	Fourier
transform.
Matplotlib	–	This	is	used	to	plot	lots	of	different	graphs,	beginning
with	histograms	to	heat	plots	to	line	plots,	and	so	on.	With	ipython
notebook,	you	can	use	the	Pylab	feature	to	access	these	plotting
features.	If	you	don’t	pay	attention	to	the	inline	option,	then	the	pylab
function	will	change	your	ipython	environment	to	something	similar
to	Matlab.	Latex	commands	are	also	able	to	be	used	to	add	math	into

your	plot.
Pandas	–	This	is	used	for	manipulations	and	structured	data
operations.	This	is	used	when	there	is	a	lot	for	data	preparation	and
munging.	This	is	still	a	fairly	new	addition	and	has	played	a	big	part
in	boosting	Python’s	usage	among	the	data	science	world.
Scikit	Learn	–	This	is	used	for	machine	learning.	This	was	built	onto
matplotlib,	NumPy,	and	Scipy.	This	library	has	plenty	of	helpful	tools
for	statistical	modeling	and	machine	learning,	which	includes
dimensionality	reduction,	clustering,	regression,	and	classification.
Statsmodels	–	This	is	used	for	statistical	modeling.	This	is	a	Python
module	that	will	let	its	users	explore	data,	perform	statistical	tests,
and	estimate	statistical	models.	You	can	find	a	large	list	of	things	like
result	statistics,	plotting	functions,	statistical	test,	and	descriptive
statistics,	and	these	can	be	used	for	different	data	types.
Seaborn	–	This	can	be	used	for	data	visualization.	This	library	helps
to	make	informative	and	attractive	statistical	graphics.	Matplotlib	is
the	basis	of	this	library.	It	aims	to	make	visualization	an	important
part	of	understanding	and	exploring	data.
Bokeh	–	This	is	used	to	create	interactive	plots,	data	applications,	and
dashboards	on	regular	web	browsers.	It	gives	the	user	the	power	to
create	concise	and	elegant	graphics	in	the	D3.js	style.	It	also	has	the
ability	for	high-performance	interactivity	with	streaming	or	large
datasets.
Blaze	–	This	is	for	improving	the	capabilities	of	Pandas	and	Numpy
to	stream	and	distribute	data	sets.	This	can	be	used	to	gain	access	to
data	from	several	different	sources.	Combined	with	Bokeh,	Blaze	is
able	to	act	like	a	powerful	tool	to	create	effective	dashboards	and
visuals	on	huge	amounts	of	data.
Scarpy	–	This	is	for	web	crawling.	This	is	a	helpful	framework	for
getting	data	set	patterns.	It	can	begin	at	a	home	URL	and	then	dig

throughout	the	pages	in	the	site	to	find	information.
SymPy	–	This	is	for	symbolic	computation.	This	library	has	a	lot	of
capabilities	that	range	from	calculus	to	basic	symbolic	arithmetic,
quantum	physics,	discrete	mathematics,	and	algebra.	Another	one	of
its	useful	features	is	its	ability	to	format	the	results	of	LaTeX	code
computations.
Requests	–	This	is	used	to	access	the	web.	This	works	a	lot	like	the
standard	library	of	Python	urllib2,	but	it	makes	things	a	lot	easier	to
code.	There	are	some	small	differences	with	urllib2,	but	for	the
beginner,	requests	tends	to	be	more	convenient.

Exploratory	Analysis	with	Pandas
Panda	is	a	very	useful	data	analysis	library	for	Python.	It	has	played	a	large	part
in	upping	the	use	Python	among	the	people	in	the	of	data	science	community.
Now	we	are	going	to	use	Panda	to	read	our	first	set	of	data.	Before	we	start	to
work	with	the	data,	you	need	to	understand	that	there	are	two	data	structures	that
Pandas	has,	DataFrames	and	Series.
You	can	understand	Series	as	a	one	dimensional	indexed	and	labeled	array.	This
can	be	used	to	access	individual	elements	of	your	series	with	labels.
Dataframes	work	very	similar	to	an	Excel	workbook.	You	will	see	column
names	which	refer	to	the	columns,	and	you	will	see	rows	that	you	can	access	by
using	row	numbers.	The	main	difference	between	the	two	is	that	the	row
numbers	and	column	names	are	referred	to	as	row	and	column	index	when	it
comes	to	dataframes.
Dataframes	and	series	are	what	create	the	core	data	model	for	Panda.	Your	set	of
data	will	first	be	read	into	the	dataframe,	and	then	you	can	perform	various
operations	to	the	columns.
At	this	point,	you	need	your	set	of	data.	This	can	be	any	data	set	that	you	want	to
play	around	with	on	Python.
To	start	out	with,	run	the	iPython	interface	in	Inline	Pylab	mode	with	this	prompt
that	you	will	type	into	your	terminal	or	windows	command	line.
“	ipython	notebook	-	-	pylab	=	inline	“
This	will	give	you	an	iPython	notebook	that	is	open	in	a	pylab	environment,
which	will	provide	with	some	useful	libraries.	Here	you	can	also	plot	your	data
inline.	This	is	why	this	is	such	a	great	environment	for	interactive	data	analysis.
In	order	to	figure	out	if	your	environment	has	been	loaded	correctly,	you	can
type	on	this	command:
“	plot(arrange(5))	“
In	this	tutorial	you	will	be	using	these	libraries:

Pandas

Matplotlib
Numpy

You	will	not	have	to	import	the	numpy	and	matplotlib	libraries	because	you	are
using	the	pylab	environment.	I	would	still	place	them	in	my	code	in	case	you
choose	to	use	a	different	environment.
Once	you	have	imported	your	library,	you	will	need	to	read	your	set	of	data	by
making	use	of	the	read_csv()	function.	This	is	how	it	should	look:
“	import	pandas	as	pf
Import	numpy	as	np
Import	matplotlib	as	plt
Df	=	pd.read_csv(“enter	the	location	of	your	data	here”)	“
After	your	set	of	data	has	been	read,	you	can	look	at	a	few	of	the	top	rows	by
using	the	following	code:
“	df.head(10)	“
This	will	give	you	a	print	out	of	ten	rows.	You	can	look	at	as	many	rows	as	you
want	to	by	printing	your	set	of	data.
Next,	we	will	take	a	look	at	the	summary	of	numerical	fields	with	this	function:
“	df.describe()	“
This	function	will	give	you	the	standard	deviation,	mean,	count,	max,	quartiles,
and	min	in	its	output.	Let’s	say	that	we	get	an	output	of	information	that	looks
like	this:

1.	 Loan	amount	is	614	to	592	with	22	missing	values.
2.	 Loan	amount	term	is	614	to	600	with	14	missing	values.
3.	 The	credit	history	is	614	to	564	with	50	missing	values.
4.	 There	are	around	84%	of	applicants	that	have	credit	history	because

the	mean	of	the	credit	history	is	0.84.
5.	 The	distribution	of	applicant	income	looks	to	be	in	line	with

expectations.	The	same	is	true	for	co-applicant	income.
With	the	information	that	you	get	from	this	output,	you	will	be	able	to	tell	if
there	is	a	skew	in	your	data	by	looking	the	mean	and	the	median.	When	you

have	non-numerical	values,	you	can	look	towards	the	frequency	of	the
distribution	to	figure	out	if	it	makes	sense.	You	can	print	out	a	frequency	table	by
using	this	command:
“	def[‘fill	in	name’].value_counts()	“
You	can	use	dfname[‘column_name’]	as	a	basic	way	to	index	in	order	to	access
a	certain	column	of	your	dataframe.	You	can	even	view	a	list	of	columns.
Now	we	can	look	at	the	distribution	of	different	variables	since	we	have	a	basic
understanding	of	data	characteristics.	Begin	by	picking	something	with	a
numeric	variable	in	your	data	to	work	with.
You	can	plot	a	histogram	for	your	numerical	value	with:
“	df[‘variable	name’].hist	(bins=50)	“
With	a	histogram,	you	will	be	able	to	tell	if	there	are	any	extreme	values.	If	this
isn’t	clear	in	your	data,	you	can	change	the	bin	value	so	that	you	can	see	the
distribution	more	clearly.	Now	you	can	look	at	the	information	in	a	box	plot	so
that	you	can	understand	the	distribution	a	bit	better.
“	df.boxplot	(column=	‘variable	name’)	“
This	will	confirm	for	you	if	there	are	extreme	values	or	outliers.	If	you	are
dealing	with	variables	like	salary	and	education,	these	two	factors	may	be	the
reason	why	you	have	such	outliers.	This	is	where	you	can	create	another	box
plot	that	separates	the	two	values,	such	as	education	and	salary.
“	df.boxplot	(column	=	‘variable	name’,	by	=	‘variable	name’)	“
This	view	should	show	you	if	there	is	a	difference	between	the	two	variables.
This	will	help	you	when	it	comes	to	analyzing	your	data.
Now	we	can	start	to	look	at	the	category	variables	in	depth.	For	this,	we	are
going	to	use	an	Excel-style	cross-tabulation	and	pivot	table.
“	temp1	=	df[‘variable	name’].value_counts(ascending=True)
Temp2	=	df.pivot_table(values=	‘Loan_Status’,	index=	[‘variable	name’],
aggfunc=lam
Bda	x:	x.map({	‘Y’	:	1,	‘N’	:	0}).	Mean())
Print	‘name	of	your	table:’

Print	temp1
Print	‘\n	name	of	your	second	table:’
Print	temp2	“
You	should	get	a	pivot	table	that	is	similar	to	Microsoft	Excel.	You	can	also	plot
this	information	like	a	bar	chart	using	the	following	code	for	matplotlib.
“	import	matplotlib.pyplot	as	plt
Fig	=	plt.figure(figsize	=	(8,	4))
Ax1	=	fig.add_subplot(121)
Ax1.set_xlabel	(‘	variable	label’)
Ax1.set_ylabel(‘	variable	label’)
Ax1.set_title(“variable	name”)
Temp1.plot	(kind=	‘bar’)
Ax2	=	fig.add_subplot(122)
Temp2.plot	(kind	=	‘bar’)
Ax2.set_xlabel(‘	variable	label’)
Ax2.set_ylabel(‘	variable	lable’)
Axe.set_title(“variable	name”)	“
This	will	show	you	the	relationship	between	your	selected	variables	and	how	one
affects	the	other.	For	example,	if	we	were	looking	at	the	chances	of	a	person
getting	a	loan,	you	would	like	to	get	a	plot	that	tells	you	that	the	odds	of	them
getting	a	loan	improve	if	they	have	a	valid	credit	history.
You	can	also	combine	this	information	into	a	stacked	chart.
“	temp3	=	pd.crosstab	(df[‘	variable	label’],	df[‘variable	label’])
Temp3.plot	(kind=	‘bar’,	stacked=True,	color=	[‘red’,	‘blue’],	grid=False)	“
You	have	now	created	two	basic	classification	algorithms,	one	that	is	based	on	a
single	variable,	and	another	with	two	stacked	variables.
You	also	know	how	to	do	an	exploratory	analysis	with	Python	using	the	Pandas
library.	Hopefully	your	love	for	the	Pandas	library	has	grown,	and	hopefully,	you
can	see	how	Pandas	can	help	you	analyze	your	sets	of	data.

Creating	a	Predictive	Model
	
You	should	do	the	data	munging	chapter	before	you	start	creating	your	predictive
model.	You	want	to	make	sure	that	it	is	useful	data.	Skicit-Learn	is	the	most
popular	library	for	creating	a	predictive	model.	This	library	requires	that	all	of
your	inputs	be	numeric.	This	means	you	need	to	change	all	of	your	variables	into
numerals	with	this:
	
“	from	sklearn.preprocessing	import	LabelEncoder
Var_mod	=	[‘labels	of	non-numeric	variables	separated	with	‘	‘,	‘	‘]
Le	=	LabelEncoder()
For	I	in	var_mod:
Df[i]	=	le.fit_transform(fd[])
Df.dtypes	“
	
Now	you	will	import	the	modules	that	you	need.	Then	you	will	have	to	define	a
classification	function	that	will	take	the	model	input	to	figure	out	the	cross-
validation	and	accuracy	scores.
	
“	from	sklearn.linear_model	import	LogisticRegression
From	sklearn.cross_validation	import	KFold
From	sklearn.ensemble	import	RandomForestClassifier
From	sklearn.tree	import	DecisionTreeClassifier,	export_graphviz
From	sklearn	import	metrics
Def	classification_model(model,	data,	predictors,	outcome):
Model.fit(data	[predictors],	data	[outcome])
Predictions	=	model.predict(data	[predictors])
Accuracy	=	metrics.accuracy_score(predictions,	data[outcome])
Print	“accuracy	:	%s”	%	‘{0:	.3%}”	.format(accuracy)

Kf	=	KFold(data.shapre	[0],	n_folds=5)
Error	=	[]
For	train,	test	in	kf:
Train_predictors	=	(data[predictors].	Iloc[train,	:])
Train_target	=	data	[outcome].iloc[train]
Model.fit(train_predictors,	train_target)
Error.append(model.score(data	[predictors].	Iloc	[test,	:],	data	[outcome].iloc
[test]))
Print	“Cross-Validation	Score	:	%s”	%	“{0:	.3%}”	.format(np.mean(error))
Model.fit(data[predictors],	data[outcome])	“
	

	
Now	we	can	now	make	a	logistic	regression	model.	One	way	to	do	this	is	to	take
all	of	the	variables	in	the	model,	but	this	could	end	up	causing	problems.	You

should	come	up	with	some	intuitive	hypothesis	based	on	what	you	know	about
your	data.	If	we	go	back	to	the	loan	example,	your	odds	of	being	approved
increase	if:
	

1.	 You	have	a	good	credit	history.
	
2.	 You	and	the	co-applicant	have	high	incomes.

	
3.	 You	have	a	higher	education	level.

	
Now	you	can	make	a	model.
	
“	outcome_var	=	‘variable	label’
Model	=	LogisticRegression()
Predictor_var	=	[‘variable	label’]
Classification_model	(model,	df,	predictor_var,	outcome_var)	”
	
You	can	also	add	in	more	variables.	When	you	do	this,	you	can	expect	the
accuracy	to	increase,	but	this	tends	to	be	more	challenging.	The	cross-validation
and	accuracy	scores	aren’t	going	to	be	impacted	very	much	by	the	less	important
variables.
	
You	can	also	create	a	decision	tree.	A	decision	tree	will	typically	provide	you
with	a	more	accurate	reading	than	the	logistic	regression	model.
	
“model	=	DecisionTreeClassifier()
Predictor_var	=	[list	of	variables	separated	by	‘	‘	,	‘	‘]
Classification_model(model,	df,	predictor_var,	outcome_var)	“
Lastly,	we	can	make	a	random	forest	which	helps	to	solve	classification
problems.

“	model	=	RandomForestClassifier(n_estimators=100)
Predictor_var	=	[list	of	variable	names	separated	by	‘	‘,	‘	‘]
Classification_model(model,	df,	predictor_var,	outcome_var)	“
If	you	end	up	getting	an	accuracy	score	of	100%,	the	chances	are	you	have
overfitted,	and	you	can	fix	this	in	two	ways.
	

1.	 Lower	the	number	of	predictors.
	
2.	 Tune	your	parameters.

	
Try	only	using	the	top	five	variables	for	your	model,	change	the	parameters	just
a	bit.
	
“	model	=	RandomForestClassifier(n_estimators=25,	min_samples_split=25,
max_depth=7,	max_features=1)
Predictor_var	=	[variable	labels	separated	by	‘	‘,	‘	‘]
Classification_model(model,	df,	predictor_var,	outcome_var)
	
You	should	see	your	accuracy	score	going	down,	and	your	cross-validation	score
improve.	This	means	that	you	model	is	generalizing	well.	You	can’t	really	repeat
random	forest	models.	Different	runs	will	give	you	slightly	different	variations
because	of	the	randomization.	But	all	of	your	outputs	should	still	be	in	the
ballpark	range.
	

Machine	Learning	and	Analytics
“Without	big	data,	companies	are	blind	and	deaf,	wandering	out	onto	the	web
like	deer	on	a	freeway.”	–	Geoffrey	Moore
When	it	comes	to	data	science,	you	will	likely	hear	the	words	machine	learning
and	data	analytics	a	lot.	There	are	a	lot	of	people	that	get	these	terms	confused,
and	they’re	not	sure	which	is	which.	Here	we	are	going	to	look	at	how	machine
learning	and	data	analytics	compares	to	data	science.

Machine	learning	is	the	practice	of	using	algorithms	to	learn	from	data	and
forecast	possible	trends.	The	traditional	software	is	combined	with	predictive
and	statistical	analysis	to	help	find	the	patterns	and	to	get	the	hidden	information
that	was	based	upon	the	perceived	data.	Facebook	is	a	great	example	for
machine	learning	implementation.	Their	machine	learning	algorithms	collect
information	for	each	user.	Based	upon	a	person’s	previous	behavior,	their

algorithm	will	predict	the	interests	of	the	person	and	recommend	notifications
and	articles	on	their	news	feed.
Since	data	science	is	a	broad	term	that	covers	several	disciplines,	machine
learning	works	into	data	science.	There	are	various	techniques	used	in	machine
learning	such	as	supervised	clustering	and	regression.	But,	the	data	that	is	used
in	data	science	may	not	have	come	from	a	machine	or	any	type	of	a	mechanical
process.	The	biggest	difference	is	that	data	science	covers	a	broader	spectrum
and	doesn’t	just	focus	on	statistics	and	algorithms	but	will	also	look	at	the	entire
data	processing	system.
Data	science	can	be	viewed	as	an	incorporation	of	several	different	parent
disciplines,	including	data	engineering,	software	engineering,	data	analytics,
machine	learning,	business	analytics,	predictive	analytics,	and	more.	It	includes
the	transformation,	ingestion,	collection,	and	retrieval	of	large	quantities	of	data,
which	is	referred	to	as	Big	Data.	Data	science	structures	big	data,	finding	the
best	patterns,	and	then	advising	business	people	to	make	the	changes	that	would
work	best	for	their	needs.	Machine	learning	and	data	analytics	are	two	tools	of
the	many	that	data	sciences	use.
A	data	analyst	is	someone	who	is	able	to	do	basic	descriptive	statistics,
communicate	data,	and	visualize	data.	They	need	to	have	a	decent	understanding
of	statistics,	and	good	understanding	of	databases.	They	need	to	be	able	to	come
up	with	new	views	and	to	perceive	data	as	a	visualization.	You	could	even	go	as
far	as	to	say	that	data	analytics	is	the	most	basic	level	of	data	science.
Data	science	is	a	very	broad	term	that	encompasses	data	analytics	and	other
several	related	disciplines.	Data	scientists	are	expected	to	predict	what	could
happen	in	the	future	using	past	patterns.	A	data	analyst	has	to	extract	the
important	insights	from	different	sources	of	data.	A	data	scientist	will	create
questions,	and	the	data	analyst	will	find	the	answers	to	them.
Machine	learning,	data	science,	and	data	analytics	are	some	of	the	most	booming
areas	of	employment	at	the	moment.	Having	the	right	combination	of	skills	and
experience	could	help	you	get	a	great	career	in	this	trending	arena.

Linear	Algebra
“My	favorite	subjects	at	school	were	algebra	and	logic:	making	a	big	problem
into	something	small.”	–	Mario	Testino	

Linear	algebra	is	a	mathematics	branch	that	handles	vector	spaces.	It	underpins	a
huge	amount	of	data	science	techniques	and	concepts,	which	means	that	it	is
important	learn	as	much	as	possible.

Vectors
	
Vectors	are	objects	that	you	can	add	together	to	make	new	vectors,	and	they	can
be	multiplied	by	scalars	to	make	new	vectors	as	well.	Vectors	are	points	located
in	a	finite	space.	While	you	may	not	view	your	data	as	a	vector,	they	are	great
ways	to	represent	numeric	information.
	
If	you	are	dealing	with	ages,	heights,	and	weights	of	a	large	group	of	people,	you
could	treat	this	data	like	three-dimensional	vectors:	age,	weight,	height.	If	you
are	teaching	a	class	that	has	four	exams	throughout	the	semester,	you	could	treat
these	grades	like	a	four-dimensional	vector:	test1,	test2,	test3,	test4.
	
One	of	the	easiest	from-scratch	approaches	is	to	show	your	vectors	as	a	number
list.	This	list	of	three	numbers	will	correspond	to	a	single	vector	in	your	three-
dimensional	space,	and	so	on:
“	height_weight_age	=	[70,
170,
40]
Grades	=	[95,
80,
75,	62]	“

	
A	problem	that	comes	with	this	approach	is	that	you	are	going	to	want	to	do
arithmetic	on	your	vectors.	Since	Python	lists	don’t	work	as	vectors,	and	as	such
don’t	give	you	any	tools	for	vector	arithmetic,	you	will	have	to	create	these	types
of	tools	yourself.	Let’s	see	how	that	would	work.
	
To	start	out,	you	will	need	to	add	in	two	vectors.	Vectors	will	add	component-
wise.	This	means	that	if	there	are	two	vectors,	a	and	b,	and	they	have	the	same

length,	they	have	a	sum	that	has	a	first	element	of	a[0]	+	b[0],	and	a	second
element	of	a[1]	+	b[1],	and	so	on.	If	they	don’t	have	the	same	length,	then	they
can’t	be	added	in.
	
If	you	were	to	add	in	the	vectors	[2,	3]	and	[3,	2]	you	would	get	[2	+	3,	3	+	2]	or
[5,	5].
	
This	can	easily	be	used	by	zipping	all	of	the	vectors	together	and	then	make	use
of	a	comprehension	to	add	in	all	of	the	corresponding	elements.
	
“	def	vector_add(a,	b):
Return	[a_i	+	b_i
For	a_i,	b_i	in	zip	(a,	b)]	“
	
In	a	similar	manner,	you	can	subtract	your	two	vectors	by	getting	rid	of	the
corresponding	elements.
	
“	def	vector_substract(a,	b):
Return	[a_i	–	b_i
For	a_i,	b_i	in	zip	(a,	b)]	“
	
There	may	be	times	when	you	need	to	sum	a	vector	list.	This	means	that	you	will
want	to	make	a	new	vector	which	is	the	sum	of	all	the	first	elements,	and	the
second	vector	is	the	sum	of	the	second	elements,	etc.	The	simplest	way	for	you
to	figure	this	out	is	to	add	a	vector	at	a	time
“	def	vector_sum	(vectors)	:
Result	=	vectors[0]
For	vector	in	vectors	[1:]	:
Result	=	vector_add(result,	vector)	Return	result	“
	

When	you	really	think	about	what	we	are	doing,	we	are	only	reducing	the	vector
list	with	vector_add.	This	means	that	we	are	able	to	rewrite	this	using	higher-
order	function,	such	as:
“	def	vector_sum(vectors)	:
Return	reduce(vector_add,	vectors)	“
Or	you	could:
“	Vector_sum	=	partial(reduce,	vector_add)	“
	
This	last	one	is	probably	cleverer	instead	of	helpful.	Next,	you	will	also	have	to
multiply	your	vector	by	your	scalar,	which	can	be	done	by	multiplying	every
vector	element	by	this	number.
	

	
“	def	scarlar_multiply	(c,	a):
Return	[c	*	a_i	for	a_i	in	a]	“
	

This	is	going	to	give	you	the	ability	to	compute	the	componentwise	means	of
your	same-sized	vector	lists.
	
“	def	vector_mean(vectors):
N	=	len(vectors)
Return	scalar_multiply(1/n,	vector_sum	(vectors))	“
	
One	of	the	lesser	known	tools	is	to	use	the	dot	product.	This	product	is	created
through	the	sum	of	two	vectors	and	their	componentwise	products.
	
“	def	dot(a,	b):
Return	sum(a_i	*	b_i
For	a_i,	b_i	in	zip(a,	b))	“
	
This	product	will	measure	how	far	vector	a	will	extend	in	vector	b’s	direction.
One	example	would	be	if	b	=	[1,	0]	then	dot	(a,	b)	is	only	the	first	element	of	a.
A	different	way	to	do	this	is	by	saying	it	is	the	length	of	the	vector	you	would
see	if	you	were	to	project	point	a	on	point	b.
	
When	you	use	this,	it	is	quite	easy	to	find	a	vector’s	sum	of	squares.
	
“	def	sum_of_squares	(a):
Return	dot	(a,	a)	“
	
And	this	can	then	be	used	to	figure	out	the	length	or	magnitude
“	import	math
Def	magnitude(a):
	
Return	math.sqrt(sum_of_square(a))	“
	

At	this	point	you	now	have	the	pieces	you	need	to	figure	out	space	between	your
two	vectors,	as	you	can	see	in	this	equation:

	
“	def	squared_distance(a,	b)	:
Return	sum_of_squares(vector_subtract	(a,	b))	Def	distanc(a,	b)	:
Return	mathsqrt(squared_distance(a,	b))	“
	
You	can	write	the	equivalent	to	get	a	clearer	image	of	what	we’re	looking	at.
	
“	def	distanc(a,	b)	:
Return	magnitude(vector_substract	(a,	b))	“
	
This	is	a	pretty	good	amount	of	information	to	help	you	get	started	with	vectors.
It’s	important	that	you	take	the	time	to	study	them	even	further	if	you	are	still
unsure	how	it	works.
	
Note:	When	it	comes	to	using	lists	as	vectors,	it	works	well	for	exposition,	but
not	for	performance.	When	it	comes	to	production	code,	you	want	to	use	NumPy
library.	This	library	includes	all	of	the	high-performance	array	class,	and	it
includes	all	of	the	arithmetic	operations.
	

Matrices
	
A	two-dimensional	set	of	numbers	is	considered	a	matrix.	The	matrices	will	be
represented	as	lists	of	lists.	Each	of	the	inner	lists	will	have	the	same	size	and
will	represent	a	matrices	row.	If	K	is	a	matrix,	then	K[c]	[d]	would	be	the
element	in	the	c	row	and	d	column.	Mathematical	convention	dictates	that
matrices	are	represented	by	capital	letters.	You	can	see	this	here:
“	K	=	[[1,	2,	3],
[4,	5,	6]]
L	=	[[1,	2],
[3,	4],
[5,	6]]	“

	
Note:	When	it	comes	to	mathematics,	the	first	row	of	a	matrix	would	be	labeled
“row	1”	and	the	first	column	would	be	names	“column	1.”	Since	we	are	writing
our	matrices	as	Python	lists,	which	are	indexed	at	zero,	our	first	matrix	row	will
be	labeled	“row	0”	the	first	column	will	be	labeled	“column	0.”
	
Since	we	are	using	list-of-lists	representation,	our	matrix	K	will	have	len(K)
rows	and	len(K[0])	columns.	Here	we	will	consider	the	shape.
	
“	def	shap(K)	;
Num_rows	=	len(K)
Num_cols	=	len(K[0])	if	K	else	0
Return	num_rows,	num_cols	“
	
If	you	have	a	matrix	with	c	rows	and	d	columns,	it	is	called	c	X	d	matrix.	You
are	able	to	view	the	rows	of	a	c	X	d	matrix	as	length	c’s	vector,	and	every
column	is	the	vector	length	d.

	
“	def	get_row(K,	c)	:
Return	K[c]
Def	get_column	(K,	d):
Return	[K_c	[d]
For	K_c	in	K]	“
	
You	will	also	want	to	make	a	matrix	based	on	the	shape	and	a	function	to	create
the	elements.	The	can	be	done	through	a	nested	list	comprehension.
	
“	def	make_matrix(num_rows,	num_cols,	entry_fn)	:	Return	[[entry_fn	(c,	d)
For	d	in	range	(num_cols)]
For	c	in	range	(num_rows)]	“
	
By	using	this	function,	you	can	create	a	five	by	five	identity	matrix	that	has	a	1s
on	the	diagonal	and	elsewhere	would	be	a	0s.
	
“	def	is_diagonal	(c,	d)	:
Return	1	if	c	==	d	else	0
Identity_matrix	=	make_matrix	(5,	5,	is_diagonal)
These	matrices	end	up	being	important	for	many	different	reasons.
	
A	matrix	can	be	used	to	represent	a	set	of	data	that	consists	of	several	vectors	by
simply	looking	at	each	of	the	vectors	as	row	for	your	matrix.	An	example	would
be	if	you	have	the	ages,	heights,	and	weights	for	1,000	people,	you	are	able	to
place	them	in	a	1,000	X	3	matrix.
	
“	data	=	[[70,	170,	40],
[65,	120,	26],
[77,	250,	19],

#	…
]	“
	
You	are	also	able	to	use	c	X	d	matrix	to	show	a	linear	function	that	will	map
your	c-dimensional	vectors	to	your	d-dimensional	vectors.	There	are	a	lot	of
concepts	and	techniques	that	will	involve	these	types	of	functions.
	
The	third	thing	you	can	do	with	matrices	is	to	use	them	to	represent	binary
relationships.	One	representation	of	an	edge	of	a	network	is	to	show	them	as	a
collection	pair	(c,	d).	But	another	way	you	could	do	this	is	make	a	matrix	K	like
K[c]	[d]	is	one	of	the	nodes	c	and	d	are	connected	and	if	not	they	are	zero.
	
In	the	former	representation	you	would	have:
“	relationships	=	[(0,	1),	(0,	2),	(1,	2),	(1,	3),	(2,	3),	(3,	4),	(4,	5),	(5,	6),	(5,	7),
(6,	8),	(7,	8),	(8,	9)]	“
	
This	could	also	be	shown	as:
	
“	relationships	=	[[0,	1,	1,	0,	0,	0,	0,	0,	0,	0],	[1,	0,	1,	1,	0,	0,	0,	0,	0,	0],	[1,	1,	0,
1,	0,	0,	0,	0,	0,	0],	[0,	1,	1,	0,	1,	0,	0,	0,	0,	0],	[0,	0,	0,	0,	1,	0,	1,	1,	0,	0],	[0,	0,	0,
0,	0,	1,	0,	0,	1,	0],	[0,	0,	0,	0,	0,	1,	0,	0,	1,	0],	[0,	0,	0,	0,	0,	0,	1,	1,	0,	1],	[0,	0,	0,
0,	0,	0,	0,	0,	1,	0]]	“
	
If	you	don’t	have	many	connections,	then	this	wouldn’t	be	a	very	efficient
representation	because	you	will	more	than	likely	have	a	lot	of	stored	zeros.
However,	when	you	use	a	matrix	representation	it	will	be	a	lot	quicker	to	check
if	your	two	nodes	are	connected.	To	do	this	you	would	only	to	do	a	matrix
lookup	instead	of	having	to	inspect	every	edge.
	
“	relationships	[0]	[2]	==	1

relationships	[0]	[8]	==	1	“
	
If	you	are	looking	to	find	connections	that	a	node	has,	you	would	have	to	inspect
column	or	row	that	corresponds	with	the	node.
	
“	friends_of_five	=	[c
For	c,	is_friend	in	enumerate(relationships[5])	If	is_friend]	“
	
Previously	you	may	have	added	a	connections	list	to	all	of	the	node	objects	to
speed	up	the	process,	but	when	it	comes	to	evolving	a	large	graph	that	would	end
up	being	a	bit	too	expensive,	and	it	would	be	hard	to	maintain.
	
	

Statistics
	
“Statistics	is	the	grammar	of	science.”	–	Karl	Pearson
	
When	it	comes	to	data	science,	it	is	important	that	you	have	a	good
understanding	of	statistics	so	that	you	are	able	to	convey	the	message	that	you
need	to.
	

Discrete	Vs.	Continuous
We	are	going	to	be	looking	at	discrete	variables.	Discrete	variables	are	variables
that	come	from	a	limited	set.	They	can	also	include	numbers	with	decimals
depending	on	your	variable	set,	but	this	rule	has	to	be	established.	For	example,
if	you	have	the	number	3.578	representing	the	number	of	medical	procedures
that	person	has	had	in	their	life,	that’s	not	possible.	Even	if	this	was	just	the
average,	it	is	still	misleading.
You	can’t	come	out	with	the	odds	are	that	person	has	had	3.578	medical
procedures	in	their	life.	They	would	have	either	had	three	or	four.	If	you	were
looking	at	procedures,	you	would	see	numbers	like	this:

Numbers	of	procedures
1
2
3

Odds	of	having	that	number	of	procedures	in	a	year
25%
25%
50%

When	you	look	at	continuous	variables,	they	can’t	be	visualized	in	a	table.
Instead,	these	variables	have	to	be	given	in	a	formula	as	there	are	an	infinite
number	of	variables.	An	example	of	an	input	variable	could	be	2,	2.9,	2.99,
2.999,	2.9999	…	n.
Examples	of	these	variables	could	be	age,	weight,	and	so	one.	A	person	isn’t	just
32.	They	are	typically	32	years	old,	195	days,	2	hours,	1	second,	4	milliseconds.
Technically,	these	variables	could	represent	any	single	moment	in	time,	and
every	interval	contains	infinite	intervals.

Statistical	Distributions
Poisson	Distribution

A	Poisson	distribution	equation	is	used	to	figure	out	how	many	events	could
happen	during	a	continuous	interval	of	time.	One	example	would	be	the	number
of	phone	calls	that	could	happen	during	a	certain	time,	or	the	number	of	people
that	could	end	up	in	a	queue.

This	is	actually	a	fairly	simple	equation	to	remember.	The	symbol	is	known	a
lambda.	This	is	what	represents	the	average	amount	of	events	that	happen	during
a	certain	interval	of	time.
An	example	for	this	distribution	equation	is	to	figure	out	the	loss	in
manufacturing	sheets	of	metal	with	a	machine	that	has	X	flaws	that	happen	per
yard.	Let’s	say	that	the	error	rate	is	two	errors	per	yard	of	metal.	Now	figure	out
what	the	odds	are	that	two	errors	would	occur	in	a	single	yard.
Binomial	Distribution

This	is	one	of	the	most	common	and	the	first	taught	distribution	in	a	basic
statistics	class.	Let’s	say	our	experiment	is	flipping	a	coin.	Specifically,	the	coin
is	flipped	only	three	times.	What	are	the	odds	that	the	coin	will	land	on	heads?
Using	combinatorics,	we	know	that	there	are	2^3	or	eight	different	results
combinations.	By	graphing	the	odds	of	getting	3	heads,	2	heads,	1	heads,	and	0
heads.	This	is	your	binomial	distribution.	On	a	graph,	this	will	look	just	like	a
normal	distribution.	This	is	because	binomial	and	normal	distributions	are	very
similar.	The	difference	is	that	one	is	discrete	and	the	other	is	continuous.

PDFs	and	CDFs
Probability	Density	Function
If	you	have	ever	taken	a	basic	statistics	class,	you	know	this	function	better	than
you	think.	Remember	standard	deviations?	How	about	when	you	calculated	the
odds	between	the	standard	and	average	deviation?	Did	you	realize	that	you	were
using	a	calculus	concept	known	as	integrals?	Now	think	about	the	space	under
the	curve.
With	this,	we	can	assume	that	the	space	under	the	curve	could	be	from	negative
infinity	to	positive	infinity,	or	it	could	be	a	number	set	like	the	sides	of	a	die.
But	the	value	under	the	curve	is	one	so	you	would	be	calculating	the	space	under
two	points	in	the	curve.	If	we	go	back	to	the	sheet	metal	example,	trying	to	find
the	odds	that	two	errors	occur	is	a	bit	of	a	trick	question.	These	are	discrete
variables	and	not	continuous.
A	continuous	value	would	be	zero	percent.
Since	the	value	is	discrete,	the	integer	will	be	whole.	There	wouldn’t	be	any
values	between	one	and	two,	or	between	two	and	three.	Instead,	you	would	have
27%	for	two.	If	you	wanted	to	know	a	value	between	two	and	three,	what	would
the	answer	be?
PDF	and	the	cumulative	distribution	function	are	able	to	take	on	continuous	and
discrete	forms.	Either	way,	you	want	to	figure	out	how	dense	the	odds	are	that
fall	under	a	range	of	points	or	a	discrete	point.
Cumulative	Distribution	Function
This	function	is	the	integral	of	the	PDF.	Both	of	these	functions	are	used	to
provide	random	variables.	To	find	the	odds	that	a	random	variable	is	lower	than
a	specific	value	you	would	us	the	cumulative	distribution	function.
The	graph	shows	the	cumulative	probability.	If	you	were	looking	at	discrete
variables,	like	the	numbers	on	a	die,	you	would	receive	a	staircase	looking
graph.	Every	step	up	would	have	1/6	of	the	value	and	the	previous	numbers.
Once	you	reach	the	sixth	step,	you	would	have	100%.	This	means	that	each	one

of	the	discrete	variables	has	a	1/6	change	of	landing	face	up,	and	once	it	gets	to
the	end	the	total	is	100%.

Testing	Data	Science	Models	and	Accuracy	Analysis
ROC	Curve	Analysis
Data	science	and	statistics	both	need	the	ROC	analysis	curve.	It	shows	the
performance	of	a	model	or	test	by	looking	at	the	total	sensitivity	versus	its	fall-
out	rate.
This	plays	a	crucial	role	when	it	comes	to	figuring	out	a	model’s	viability.
However,	like	a	lot	of	technological	leaps,	this	was	created	because	of	war.
During	WWII	they	used	it	to	detect	enemy	aircraft.	After	that,	it	moved	into
several	other	fields.	It	has	been	used	to	detect	the	similarities	of	bird	songs,
accuracy	of	tests,	response	of	neurons,	and	more.
When	a	machine	learning	model	is	run,	you	will	receive	inaccurate	predictions.
Some	of	the	inaccuracy	is	due	to	the	fact	that	it	needed	to	be	labeled,	say,	true,
but	was	labeled	false.	And	others	need	to	be	false	and	not	true.
What	are	the	odds	that	the	prediction	is	going	to	be	correct?	Since	statistics	and
predictions	are	just	supported	guesses,	it	becomes	very	important	that	you	are
right.	With	an	ROC	curve,	you	are	able	to	see	how	right	the	predictions	are	and
using	the	two	parable	figure	out	where	to	place	the	threshold.
The	threshold	is	where	you	choose	if	the	binary	classification	is	false	or	true,
negative,	or	positive.	It	will	also	make	what	your	Y	and	X	variables	are.	As	your
parables	reach	each	other,	your	curve	will	end	up	losing	the	space	beneath	it.
This	shows	you	that	the	model	is	less	accurate	no	matter	where	your	threshold	is
placed.	When	it	comes	to	modeling	most	algorithms,	the	ROC	curve	is	the	first
test	performed.	It	will	detect	problems	very	early	by	letting	you	know	if	your
model	is	accurate.

Some	Algorithms	and	Theorems
There	are	Boolean,	basic	deduction,	neural	networks,	decision	trees,	clustering
algorithms,	classification	algorithms,	and	on	and	on.
Bayes	Theorem
This	is	one	of	the	more	popular	ones	that	most	computer	minded	people	need	to
understand.	You	can	find	it	being	discussed	in	lots	of	books.	The	best	thing	about
the	Bayes	theorem	is	that	it	simplifies	complex	concepts.	It	provides	a	lot	of
information	about	statistics	in	just	a	few	variables.
It	works	well	with	conditional	probability,	which	means	that	if	this	happens,	it
will	play	a	role	in	the	resulting	action.	It	will	allow	you	to	predict	the	odds	of
your	hypothesis	when	you	give	it	certain	points	of	data.
You	can	use	Bayes	to	look	at	the	odds	of	somebody	having	cancer	based	upon
age,	or	if	spam	emails	are	based	on	the	wording	of	the	message.
The	theorem	helps	lower	your	uncertainty.	This	was	used	in	WWII	to	figure	out
the	locations	of	U-boats	and	predict	how	the	Enigma	machine	was	created	to
translate	codes	in	German.
K-Nearest	Neighbor	Algorithm
This	is	one	of	the	easiest	algorithms	to	learn	and	use,	so	much	so	that	Wikipedia
refers	to	it	as	the	“lazy	algorithm.”
The	concept	of	the	algorithm	is	less	statistics	based	and	more	reasonable
deduction.	Basically,	it	tries	to	identify	the	groups	that	are	closest	to	each	other.
When	k-NN	is	used	on	a	two-dimensional	model,	it	will	rely	on	Euclidian
distance.
This	only	happens	if	you	are	working	with	a	one	norm	distance	as	it	relates	to
square	streets,	and	that	cars	are	only	able	to	travel	in	a	single	direction	at	a	time.
The	point	I’m	making	that	the	models	and	objects	in	this	rely	on	two
dimensions,	just	like	the	classic	xy	graph.
k-NN	tries	to	identify	groups	that	are	situated	around	a	certain	number	of	points.
K	is	the	specified	number	of	points.	There	are	certain	ways	to	figure	out	how	big

your	k	needs	to	be	because	it	is	an	inputted	variable	that	the	data	science	system
or	user	has	to	pick.
This	model	is	perfect	for	feature	clustering,	basic	market	segmentation,	and
finding	groups	that	are	among	specific	data	points.	The	majority	of	programming
languages	will	let	you	implement	in	a	couple	of	code	lines.
Bagging	or	Bootstrap	Aggregating
Bagging	will	involve	making	several	models	of	one	algorithm	like	a	decision
tree.	Each	one	of	them	will	be	trained	on	different	bootstrap	sample.	Since	this
bootstrapping	will	involve	sampling	with	replacement,	some	of	your	data	won’t
be	used	in	all	of	the	trees.
The	decision	trees	that	are	made	are	created	with	different	samples,	which	will
help	to	solve	the	problem	of	sample	size	overfitting.	Decision	trees	that	are
created	in	this	way	will	help	to	lower	the	total	error	since	the	variance	will
continue	to	lower	with	ever	tree	that	is	added,	without	increasing	the	bias.
A	random	forest	is	a	bag	of	decision	trees	that	use	subspace	sampling.	There	is
only	one	selection	of	the	trees	features	that	is	considered	at	the	split	of	each
node,	which	removes	the	correlation	of	the	trees	in	your	forest.
These	random	forests	also	have	their	own	built-in	validation	tool.	Since	there	is
only	a	percentage	of	this	data	that	gets	used	for	every	model,	the	error	of	the
performance	can	be	figure	out	using	only	37%	of	the	sample	that	was	left	by	the
models.
This	was	only	a	basic	rundown	of	some	statistical	properties	that	are	helpful	in
data	science.	While	some	data	science	teams	will	only	run	algorithms	in	R	and
Python	libraries,	it’s	still	important	to	understand	these	small	areas	of	data
science.	They	will	make	easier	abstraction	and	manipulation	easier.

Decision	Trees
“Data	is	a	precious	thing	and	will	last	longer	than	the	systems	themselves.”	–
Tim	Berners-Lee
For	banks	to	figure	out	if	a	they	should	offer	a	person	a	loan	or	not,	they	will
often	work	through	a	list	of	questions	to	see	if	the	person	would	be	safe	to	give
the	loan	to.	These	types	of	questions	could	start	are	simply	like,	“What	kind	of
income	do	you	have?”	If	the	answer	is	between	$30	and	$70,000,	they	will
continue	onto	the	following	question.	“How	long	have	you	worked	at	your
current	job?”	If	they	say	one	to	five	years,	it	will	continue	onto	their	next
question.	“Do	you	make	regular	credit	card	payments?”	If	they	yes,	then	they
will	offer	them	a	loan,	and	if	they	don’t	they	won’t	get	the	loan.	This	is	the	most
basic	decision	tree.
A	decision	tree	is	pretty	much	just	a	non-parametric	machine	learning	modeling
technique	that	is	used	for	classification	and	regression	problems.	In	order	to	find
the	solutions,	a	decision	tree	will	create	a	hierarchical	and	sequential	decision
that	variables	of	the	outcome	based	on	data.
And	this	means	what?
Hierarchical	refers	to	the	model	that	is	defined	by	a	question	series	that	will	lead
to	a	label	or	value	once	it	has	been	applied	to	an	observation.	After	it	is	set	up,
this	model	will	work	like	a	protocol	using	a	bunch	of	“if	this	happen	then	that
will	happen”	conditions	that	will	give	a	certain	result	from	the	data	that	was
added.
A	method	that	is	non-parametric	means	that	there	won’t	be	an	underlying
assumption	concerning	the	distribution	of	the	data	or	errors.	This	basically
means	that	you	model	will	be	created	by	using	observed	data.
Decision	trees	that	use	a	discrete	value	set	for	the	target	variable	are
classification	trees.	With	these	types	of	trees,	the	nodes,	or	leafs,	are
representations	of	class	labels,	and	the	branches	show	the	feature	conjunctions

that	lead	to	the	class.	Decision	trees	that	have	target	variables	that	are	taking
continuous	value,	which	is	typically	numbers,	are	referred	to	as	Regression
Trees.	Together,	these	two	types	of	decision	trees	are	called	CART.
Each	one	of	these	models	is	a	case	of	a	Directed	Acyclic	Graph.	All	of	the
graphs	have	nodes	that	show	a	decision	point	about	the	top	variable	given	the
edges	and	predictor	that	are	between	each	node.	If	we	continue	with	the	loan
scenario,	$30	to	$70,000	would	represent	an	edge,	and	“Years	at	present	job”
would	be	a	node.
The	main	goal	of	the	decision	tree	is	to	make	the	best	choice	once	you	reach	the
end	of	a	node	so	it	will	need	an	algorithm	that	does	that.	This	is	known	as	Hunt’s
algorithm,	which	works	recursive	and	greedily.	Greedily	means	it	makes	the	best
choice	and	recursive	means	that	it	split	big	questions	into	smaller	ones.	The
choice	of	splitting	a	node	is	decided	according	a	purity	metric.	Nodes	are
considered	100%	impure	if	a	node	is	split	50/50,	and	it	is	considered	100%	if	all
of	the	data	is	a	part	of	one	class.
To	make	sure	that	the	model	is	optimized	you	have	to	reach	a	max	purity	and
stay	away	from	impurity.	You	do	this	by	using	the	Gini	impurity,	which	will
measure	how	often	a	random	element	ends	up	being	labeled	wrong	if	the
distribution	randomly	labeled	it.	This	is	figured	out	by	adding	the	odds,	pi,	of	a
node	with	the	label,	I,	being	picked	then	multiplied	by	the	odds	of	a	mistake	in
categorization.	The	goal	is	to	make	sure	you	reach	0	where	it	should	be	pure.
The	other	metric	that	it	will	use	is	information	gain.	This	is	for	deciding	the
feature	that	you	split	at	each	tree	step.	This	can	be	figured	out	using	this
equation.
“Information	Gain	=	Entropy(parent)	–	Weight	Sum	of	Entropy(Children)”
This	is	a	pretty	good	model,	but	it	presents	a	problem	because	it	results	in	a
model	that	will	only	stop	once	all	of	the	information	is	distributed	into	a	single
attribute	or	class.	At	the	cost	of	bias,	the	model’s	variance	is	huge	and	will	end
up	leading	to	over	fitting.	This	can	be	fought	by	setting	a	max	depth	of	your	tree,
or	by	setting	an	alternative	to	specify	the	minimum	amount	of	points	that	will	be

needed	to	decide	to	split.
With	decision,	trees	comes	advantages	and	disadvantages.	On	the	down	side,
they	are	greedy	algorithms	that	are	locally	optimized	where	a	return	to	the	global
tree	isn’t	guaranteed.	On	the	positive	side,	they	are	super	simply	to	understand
because	they	have	a	visual	representation	that	doesn’t	require	all	that	much	data.

Neural	Networks
	
“Data	matures	like	wine,	applications	life	fish.”	–	James	Governor
Neural	networks,	which	are	sometimes	referred	to	as	Artificial	Neural	Networks,
are	a	simulation	of	machine	learning	and	human	brain	functionality	problems.
You	should	understand	that	neural	networks	don’t	provide	a	solution	for	all	of
the	problems	that	come	up	but	instead	provide	the	best	results	with	several	other
techniques	for	various	machine	learning	tasks.	The	most	common	neural
networks	are	classification	and	clustering,	which	could	also	be	used	for
regression,	but	you	can	use	better	methods	for	that.
	
A	neuron	is	a	building	unit	for	a	neural	network,	which	works	like	a	human
neuron.	A	typical	neural	network	will	use	a	sigmoid	function.	This	is	typically
used	because	of	the	nature	of	being	able	to	write	out	the	derivative	using	f(x),
which	works	great	for	minimizing	error.
	
Sigmoid	function:	f(x)	=	1/1+e^-x
Neurons	are	then	connected	in	layers	in	order	for	a	single	layer	to	communicate
with	other	layers	which	will	form	the	network.	The	layers	that	are	within	the
input	and	output	layers	are	known	as	hidden	layers.	The	outputs	of	a	layer	are
sent	to	the	inputs	of	a	different	layer.
	

	
For	a	neural	network	to	learn,	you	have	to	adjust	the	weights	to	get	rid	of	most	of
the	errors.	This	can	be	done	by	performing	back	propagation	of	the	error.	When
it	comes	to	a	simple	neuron	that	uses	the	Sigmoid	function	as	its	activation
function,	you	can	demonstrate	the	error	as	we	did	below.	We	can	consider	that	a
general	case	where	the	weight	is	termed	as	W	and	the	inputs	as	X.
	
With	this	equation,	the	weight	adjustment	can	be	generalized,	and	you	would
have	seen	that	this	will	only	require	the	information	from	the	other	neuron
levels.	This	is	why	this	is	a	robust	mechanism	for	learning,	and	it	is	known	as
back	propagation	algorithm.
	

To	practice	this,	we	can	write	out	a	simple	JavaScript	application	that	uses	two
images	and	will	apply	a	filter	to	a	specific	image.	All	you	will	need	is	an	image
you	want	to	change	and	fill	in	its	filename	where	it	says	to	in	the	code.
	
“	import	Jimp	=	require(“jimp”);
Import	Promise	from	“ts-promist”;
Const	synaptic	=	require(“synaptic”);	Const	_	=	require(“lodash”);
Const	Neuron	=	synaptic.Neuron,
Layer	=	synaptic.Layer,	Network	=	synaptic.Network,	Trainer	=

synaptic.Trainer,
Architect	=	synaptic.Architect;	Function	getImgData(filename)	{
Return	new	Promise((resolve,	reject)	=>	{

Jimp.read(filename).then((image)	=>	{
Let	inputSet:	any	=	[];
Image.scan(0,	0,	image.bitmap.width,	image.bitmap.height,	function	(x,	y,	idx)	{
Var	red	=	image.bitmap.data[idx	+	0];	Var	green	=	image.bitmap.data[idx	+	1];
inputSet.push([re,	green]);
});
Resolve(inputSet);
}).catch(function	(err)	{

Resolve([]);
});

});
}
Const	myPerceptron	=	new	Archietect.Perceptron(4,	5);	Const	trainer	=	new
Trainer(myPerceptron);	Const	traininSet:	any	=	[];
getImgData(‘	imagefilename.jpg’).	then((inputs:	any)	=>	{
getImageData(‘imagefilename.jpg’).then((outputs:	any)	=>	{

for	(let	i=0;	I	<	inputs.length;	i++)	{
trainingSet.push({

input:	_.map(inputs[i],	(val:	any)	=>	val/255),	output:	_.map(outputs[i],	(val:
any)	=>	val/255)	});
}
Trainer.train(trainingSet,	{
Rate:.1,
Interations:	200,
Error:	.005,
Shuffle:	true,
Log:	10,
Cost:	Trainer.cost.CROSS_ENTROPY
});
Jimp.read(‘yours.jpg’).then((image)	=>	{
Image.scan(0,	0,	image.bitmap.width,	image.bitmap.height,	(x,	y,	idx)	=>	{
Var	red	=	image.bitmap.data[idx	+	0];	Var	green	=	image.bitmap.data	[idx	+
1];	Var	out	–	myPerceptron.activate([red/255,	green/255);
Image.bitmap.data[idx	+	0]	=	_.round(out[0]	*	255);	Image.bitmap.data[idx	+
1]	=	_.round(out[1]	*	255);	});
Console.log(‘out.jpg’);
Image.write(‘out.jpg’);
}).catch(function	(err)	{
Console.error(err);
});
});

});

Scalable	Data	Processing
“Talented	data	scientists	leverage	data	that	everybody	sees;	visionary	data
scientists	leverage	data	that	nobody	sees.”	–	Vincent	Granville,	Executive	Data
Scientist	&	Co-Founder	of	Data	Science	Central
Processing	frameworks	compute	a	systems’	data	through	ingesting	it	into	the
system	or	reading	non-volatile	storage.	Computing	over	data	is	where	you
extract	insight	and	information	from	a	large	amount	of	data	points.
Processing	engines	and	frameworks	are	used	for	computing	the	data	in	your
system.	While	there	isn’t	really	a	definition	that	sets	engines	and	frameworks
apart,	it’s	helpful	to	define	the	former	as	the	component	that	is	responsible	for
working	with	the	data,	and	the	latter	is	a	set	of	components	that	are	created	to	do
the	same	thin.
Apache	Hadoop	can	be	seen	as	a	processing	framework,	and	MapReduce	would
be	seen	as	the	processing	engine.	Often	times	you	can	swap	out	engines	and
frameworks,	or	you	can	use	them	together.	Apache	Spark	is	a	framework	that	is
able	to	be	connected	to	a	Hadoop	to	replace	MapReduce.	The	fact	that	the
components	are	able	to	work	together	is	the	main	reason	big	data	systems	tend	to
be	flexible.
While	these	types	of	systems	that	take	care	of	this	part	of	the	data	life	cycle	tend
to	be	complex,	the	goals	across	a	broad	level	are	similar.	They	operate	over	data
so	that	they	can	improve	the	surface	patterns,	understanding,	and	create	insights
into	the	interactions.
To	make	things	simpler,	we	will	combine	some	of	these	processing	frameworks
by	the	data	that	they	are	created	to	handle.	There	are	some	systems	that	will
handle	data	in	batches,	while	there	are	others	that	process	data	in	a	more
continuous	stream	while	it	is	flowing	through	the	system.	Then	there	are	others
that	handle	the	data	in	both	ways.

Batch	Processing	Systems
Batch	processing	works	by	looking	at	a	large	and	static	set	of	data	and	then
returns	the	results	at	another	time	once	the	computation	has	been	completed.
The	data	that	is	normally	processed	in	batch	is:

Large:	batch	operations	tend	to	be	the	only	option	when	it	comes	to
process	large	amounts	of	data.
Persistent:	data	is	typically	backed	by	some	form	of	storage	that	is
permanent.
Bounded:	batch	sets	of	data	represent	a	certain	group	of	data.

Batch	processing	tends	to	be	well-suited	for	calculations	where	you	have	to	have
access	to	whole	set	of	records.	For	example,	when	you	are	calculating	averages
and	totals,	sets	of	data	should	be	treated	holistically	and	not	as	a	group	of
individual	records.	These	types	of	operations	will	require	that	state	is	kept	for	the
complete	time	of	the	calculation.
Tasks	that	need	a	large	amount	of	data	are	typically	best	handled	with	a	batch
operation.	Batch	systems	are	created	expecting	large	amounts	of	data	and	will
have	the	resource	that	they	need	in	order	to	handle	them.	Since	batch	processing
is	amazing	at	taking	care	of	large	volumes	of	data,	it	tends	to	be	used	with	data
that	is	historical.
The	trade-off	for	all	of	this	large	quantity	handling	means	that	it	takes	a	longer
time	to	compute.	Because	of	this	batch	processing	isn’t	always	good	to	use	in
certain	situations	where	the	time	it	takes	plays	an	important	role.

Apache	Hadoop
This	is	a	processing	framework	that	provides	batch	processing.	Hadoop	is	the
first	framework	that	ended	up	gaining	a	fair	amount	of	significant	traction	within
the	open-source	world.	After	several	presentations	and	papers	from	Google
about	the	way	they	were	dealing	with	large	amounts	of	data,	Hadoop	started	to
use	components	and	algorithm	stacks	so	that	they	could	make	processing	large
amounts	of	data	easier.
The	modern	version	of	Hadoop	is	made	up	of	a	lot	of	layers	or	components	that
all	work	together	in	order	to	process	batch	data:	MapReduce:	this	is	the	native
batch	processing	engine.
YARN:	this	stands	for	Yet	Another	Resource	Negotiator,	and	is	a	cluster
coordinating	component	for	this	stack.	It	makes	sure	that	the	underlying
scheduling	and	resources	are	managed	and	coordinated.	YARN	is	what	makes
things	possible	to	be	able	to	run	more	diverse	workloads	through	this	cluster
than	could	be	done	with	earlier	iterations	by	working	like	an	interface	for	the
resources.
HDFS:	this	is	the	distributed	file	system	that	uses	node	clusters	to	coordinate
replication	data	storage.	HDFS	makes	sure	that	data	stays	available	no	matter	the
possible	host	failures.	This	is	used	by	data	sources	in	order	to	store	the
intermediate	results	and	perfect	the	final	results.
Hadoop’s	processing	functionality	comes	from	MapReduce.	The	processing
technique	follows	the	reduce,	map,	and	shuffle	algorithm	using	the	key-value
pairs.	This	procedure	will	involve:

Reading	the	set	of	data	from	HDFS.
Dividing	the	set	of	data	up	into	chunks	that	is	distributed	through	the
nodes	that	are	available.
Applying	the	computation	for	each	of	the	nodes	to	the	data	subset.
Redistributing	the	intermediate	results	so	that	they	are	grouped	by
key.

Reduce	the	value	of	the	keys	by	combining	and	summarizing	the
results	that	the	individual	nodes	calculated.
Writing	the	final	results	into	the	HDFS.

Stream	Processing	Systems
This	system	computes	the	data	as	it	goes	into	the	system.	This	will	require
different	processing	models	than	the	batch	processing	system.	Instead	of
defining	the	operation	that	needs	to	be	applied	to	the	whole	dataset,	these
processors	will	define	the	operations	that	have	to	be	applied	to	the	individual
pieces	of	data	as	it	goes	through	the	system.
In	stream	processing,	the	datasets	are	seen	as	unbounded.	There	are	few
implications:

The	processing	is	based	on	events,	and	it	doesn’t	end	until	somebody
stops	it.	Results	will	then	be	shared	immediately	and	will	always	be
updated,	and	new	data	comes	in.
The	working	set	of	data	tends	to	be	more	relevant	and	is	limited	to
only	one	thing	at	a	time.
The	total	set	of	data	is	defined	the	how	much	data	has	come	into	the
system	thus	far.

Stream	processing	systems	are	able	to	handle	pretty	much	an	unlimited	amount
of	data,	but	they	are	only	able	to	process	one,	or	very	few	items	at	a	single	time,
with	very	little	status	maintained	in	between	the	records.	While	there	are	a	lot	of
systems	that	provide	methods	to	maintain	some	state,	this	type	of	processing	is
optimized	for	better	functionality	with	very	few	side	effects.

Apache	Storm
This	is	a	stream	processing	framework	that’s	main	focus	is	extreme	low	latency
and	is	probably	one	of	the	best	options	when	it	comes	to	work	that	needs	almost
real-time	results.	It	is	able	to	handle	large	amounts	of	data	and	provide	results
with	less	latency	than	other	types	of	applications.
Storm	works	by	using	DAG	(Directed	Acyclic	Graphs)	in	a	framework	known	as
topologies.	This	framework	describes	the	different	steps	that	have	to	be	taken	for
every	piece	of	data	that	goes	into	the	system.
These	topologies	are	made	up	of:	Bolts	–	these	are	the	processing	steps	that
make	up	the	streams,	applies	the	operation,	and	provide	the	results.	There	are
bolts	on	every	spout,	and	they	connect	to	each	other	to	create	the	processing	that
is	needed.	A	final	bolt	output	can	be	used	at	the	end	of	the	topology	for	a
connected	system.
Spouts	–	the	sources	of	the	data	travel	to	the	edge	of	the	topology.	This	could
end	up	being	queues,	APIs,	and	so	on	that	creates	the	data	that	needs	to	be
operated	on.
Streams	–	this	is	the	unbounded	data	that	will	continuously	flow	into	the
system.
The	purpose	of	Storm	is	to	define	discrete	and	small	operations	that	use	these
components	and	then	create	a	topology.	Storm	provides	an	at-least-once
guarantee,	which	means	that	it	guarantees	that	each	message	will	be	process	at
least	one	time,	but	you	can	find	some	duplicates	when	there	is	a	failure.	Storm
doesn’t	guarantee	messages	will	processed	in	the	order	that	they	came	in.

Apache	Samza
This	processing	framework	is	very	close	in	nature	to	Apache	Kafka	messaging
system.	Kafka	can	be	used	for	most	stream	systems,	and	Samza	is	made	so	that	it
specifically	takes	advantage	of	Kafka’s	guarantees	and	architecture.	Kafka	is
there	to	provide	Samza	with	fault	tolerance,	state	storage,	and	buffering.
For	resource	negotiation,	Samza	uses	YARN.	This	means	that	there	will	have	to
be	a	Hadoop	cluster,	but	this	also	means	that	there	will	be	the	features	of	YARN
present.
Samza	uses	the	semantics	of	Kafka	to	define	how	their	streams	will	be	handled.
Kafka	uses	these	types	of	concepts	when	they	are	dealing	with	data:	Consumers
–	these	are	the	parts	that	read	from	a	Kafka	topic.
Producer	–	these	are	the	components	that	write	to	a	Kafka	topic.
Brokers	–	these	are	the	nodes	that	make	of	the	clusters.
Partitions	–	the	topics	are	distributed	evenly	among	nodes	by	dividing	the
incoming	messages	into	partitions.
Topics	–	all	of	the	data	that	enters	into	the	Kafka	system	is	known	as	topics.

Hybrid	Processing	Systems
There	are	some	frameworks	that	are	able	to	handle	stream	and	batch	workloads.
These	make	the	diverse	requirements	simple	by	letting	the	same	or	similar	APIs
and	components	to	be	used	for	each	data	type.
The	way	this	is	done	will	vary	between	the	different	frameworks	like	we	will	see
in	Flink	and	Spark.	This	is	pretty	much	the	function	of	how	the	processing
paradigms	come	together	and	the	assumptions	that	end	up	being	made	about	the
data’s	relationship	between	the	unfixed	and	fixed	data.
While	you	may	have	a	project	that	fits	closely	for	a	specific	system,	a	hybrid
system	is	there	to	try	and	offer	a	basic	solution	for	the	processing.	They	not	only
give	you	a	method	for	processing	the	data,	but	they	will	have	their	own	tooling,
integrations,	and	libraries	for	things	like	interactive	querying,	graph	analysis,
and	machine	learning.

Apache	Spark
This	is	a	framework	that	is	batch	processing	with	stream	processing	ability.	It	is
built	with	a	lot	of	the	same	principles	of	MapReduce,	and	it	focuses	mainly	on
the	processing	speed	of	its	workload	by	providing	full	processing	and	in-
memory	computation.
Spark	can	be	used	standalone,	or	it	can	connect	with	Hadoop	as	a	MapReduce
alternative.
Spark	will	process	all	of	the	data	in-memory	and	will	only	interact	with	the
storage	layer	when	it	starts	to	load	the	data.	At	the	end,	it	will	provide	the	final
results.	Everything	else	is	managed	through	memory.
Spark	works	faster	when	it	comes	to	disk-related	tasks	because	of	their
optimization	that	is	able	to	be	reached	by	looking	at	the	entire	task	beforehand.	It
is	able	to	do	this	by	making	DAGs,	which	show	the	operations	that	need	to	be
done,	the	data	to	be	worked	on,	and	the	relationship	between	them,	which	will
give	the	processor	better	chance	of	coordinating	work.
Stream	gets	it	stream	processing	from	Spark	Streaming.	Spark	by	itself	is	made
for	batch-oriented	work.	Spark	has	implemented	a	design	known	as	micro-
batches.	This	strategy	was	created	to	treat	streams	of	data	as	if	it	were	little
batches	of	data	that	it	can	handle	by	using	its	batch	engine’s	semantics.

Apache	Flink
This	is	a	stream	framework	which	can	handle	batch	data.	It	sees	the	batches	and
streams	of	data	that	has	defined	boundaries,	so	it	ends	up	treating	batch
processing	as	a	stream	processing	subset.
Their	stream-first	approach	is	called	the	Kappa	architecture,	which	is	in	contrast
to	the	better-known	Lambda.	Kappa	works	by	treating	everything	as	streams,
simplifies	the	model,	and	very	recently	it	has	become	possible	because	of	the
sophistication	of	stream	engines.
Flink’s	model	works	with	incoming	data	as	it	comes	in,	just	like	a	true	stream.	It
uses	a	DataStream	API	to	work	on	the	unbounded	data	that	comes	in.	Its	basic
components	are:	Sink	–	this	is	where	the	stream	comes	out	of	the	system.
Sources	–	this	is	where	the	streams	enter	the	system.
Operators	–	these	are	functions	that	operate	on	streams	of	data	to	create	new
streams.
Streams	–	these	are	the	unbounded	and	immutable	sets	of	data	that	travel
through	the	system.
The	batch	processing	for	Flink	works	similarly	to	an	extension	of	its	stream
model.	Instead	of	reading	from	a	continuous	stream	it	read	as	a	bounded	set	of
data	off	of	the	persistent	storage.	The	runtime	for	both	of	these	processing
models	are	exactly	the	same	for	Flink.
In	the	end,	Hadoop	is	a	great	option	if	you	have	batch-only	workload	and	the
batches	aren’t	time-sensitive.	Storm	is	a	good	option	for	stream-only	workloads
because	it	provides	low	latency	processing.	Smaza	uses	Kafka	and	YARN	so	that
it	is	able	to	be	flexible	and	straightforward.
If	you	have	mixed	workloads,	your	best	choices	are	Flink	and	Spark.	Spark	has	a
large	number	of	tools	and	libraries.	Flink	will	provide	you	with	great	stream
processing	that	supports	batch	processing.
Finding	the	best	fit	for	you	is	up	to	you	to	figure	out.	It	will	depend	upon	the
data	that	you	have	to	process,	and	how	bound	by	time	you	are.

Data	Science	Applications
“The	big	technology	trend	is	to	make	systems	intelligent,	and	data	is	the	raw
material.”	–	Amod	Malviya,	CTO	at	flipkart

Even	after	everything	in	this	book,	some	people	will	still	be	driven	to	ask,	“Is
data	science	really	popular	or	is	it	going	to	be	a	one-time	opportunity?”
Different	people	will	likely	have	different	viewpoints.	Instead	of	starting	a
debate,	we’re	going	to	take	a	safer	approach.	We	are	going	to	look	at	the
applications	that	affect	the	layman’s	life,	and	where	data	science	plays	a	large
role.
Internet	Search
Chances	are	when	you	hear	the	word	search	your	first	thought	is	Google.	But
there	are	actually	several	other	search	engines	out	there	such	as	duckduckgo,
AOL,	Ask,	Big,	and	Yahoo.	Every	search	engine	out	there	uses	some	form	of	a
data	science	algorithm	to	provide	their	uses	the	best	results	for	their	search	query
in	less	than	a	second.	Think	about	this.	Google	processes	over	20	petabytes	of

data	every	single	day.	If	there	wasn’t	any	data	science,	Google	would	not	be	as
good	as	it	is	today.
There	may	be	a	lot	of	companies	that	try	to	make	data-based	decisions;	Google
uses	a	rigorous	statistical	analysis	and	scientific	testing	that	is	more	commonly
found	in	university	labs.	Google	did	what	they	called	People	Analytics	so	that
they	could	better	understand	how	humans	worked	so	that	they	can	improve	their
services	and	their	hiring	process.
Digital	Advertisements
The	entire	digital	marketing	spectrum	is	the	biggest	application	for	data	science.
Beginning	with	the	display	banners	on	different	sites	to	the	digital	billboards	that
you	see	in	airports,	nearly	every	single	one	of	them	uses	data	science	algorithms
to	run	properly.
This	is	why	digital	ads	are	able	to	receive	better	CTR	than	the	traditional	ads.
These	ads	are	able	to	be	targeted	based	up	the	behavior	of	the	user.
Data	science	helped	to	improve	digital	ads	by	helping	people	find	the	best	bid
price	depending	on	the	use,	and	the	network	that	they	are	bidding	on.	The	best
thing	is	that	they	can	spend	their	advertising	budget	more	efficiently.
They	are	also	able	to	detect	fraud.	This	is	mainly	click	based	fraud	performed	by
malicious	bots.	They	can	examine	the	statistical	properties	that	pertain	to	the
clicking	behavior	of	the	regular	users	versus	the	click	properties	from	the
malicious	bots,	and	then	they	can	find	algorithms	to	combat	the	ever	changing
strategies	of	these	bots.
They	also	group	their	customers	into	different	interest	segments	based	on	their
browsing	history,	but	they	also	use	third	party	data	to	find	the	relevant	clusters
where	the	customers	share	similar	properties.	When	they	find	customers	that
have	the	same	properties,	the	advertisers	target	these	audiences	and	prioritize	the
high	value	audiences.
Recommender	Systems
Recommender	systems	are	tools	that	were	made	for	interacting	with	complex
and	large	amounts	of	information	spaces	and	prioritize	items	in	these	spaces	that

will	likely	interest	the	user.	This	area	was	created	in	1995,	and	has	grown
enormously	in	the	variety	of	problems	addressed.
Think	about	the	suggestions	Amazon	gives	you.	They	help	you	to	find	relevant
products	from	billions	of	others,	but	that	also	improve	your	experience.	There
are	a	lot	of	companies	out	there	that	use	this	system	to	promote	suggestions	that
align	with	their	user’s	internet.	The	giants	of	the	internet	like	imdb,	Linkdin,
Netflix,	Google	Play,	Twitter,	Amazon,	and	several	more	use	this	type	of	system
to	make	their	user’s	experience	better.	The	recommendations	you	see	are	based
upon	your	previous	searches.
The	purpose	of	recommender	systems	could	include:

Assistance	in	exploration
Assistance	is	discovery
Assistance	in	comparison
Assistance	in	decision	making

Recommender	systems	can	also	be	helpful	in	calculating	the	behavior	of	these
users:

Loyal	users	and	unpopular	items
Loyal	users	and	popular	items
Non-loyal	users	and	unpopular	items
Non-loyal	users	and	popular	items

Image	Recognition
Whenever	you	upload	a	picture	to	Facebook	of	you	and	your	friends,	you	start	to
get	suggest	of	who	you	should	tag	in	the	photo.	This	automatic	suggestion	uses	a
face	recognition	algorithm.	In	the	same	way	as	the	WhatsApp,	you	are	able	to
scan	a	barcode	while	in	your	phones’	web	browser.	Google	also	provides	you
with	the	chance	to	search	for	images	by	uploading	one.	It	makes	use	of	image
recognition	and	then	gives	you	related	results.
Hiring	humans	to	manual	tag	libraries	of	music	and	movies	is	a	daunting	task,
but	it’s	impossible	when	you’re	talking	about	the	challenges	of	teaching	a
navigation	system	in	a	driverless	car	to	distinguish	pedestrians	crossing	the	road

from	other	vehicles,	or	filtering,	tagging,	and	categorizing	the	millions	of	user-
upload	videos	and	pictures	that	show	up	every	day	on	social	media.
Neural	networks	are	commonly	used	for	analyzing	images,	but	conventional
neural	networks	tend	to	be	more	expensive.	It	would	take	900	inputs	and	more
than	half	a	million	parameters	to	process	a	small	image.	That’s	why	people	tend
to	use	convolutional	neural	networks	for	better	image	recognition	skills.
Speech	Recognition
Cortana,	Google	Voice,	and	Siri	are	the	best	examples	of	speech	recognition.
Whether	you	can	type	or	not,	you	can	speak	your	message,	and	it	will	be
changed	to	text.
Data	science	helps	by	assisting	the	talk	and	speech	applications	by	recognizing
voice	messages	in	a	more	effective	manner,	and	then	produces	accurate	text
outputs	in	response.	Deep	learning	is	one	of	the	most	reliable	techniques	for
coming	up	with	an	exact	and	accurate	speech	recognition	result.
One	of	the	traditional	ways	was	to	use	a	simple	neural	network	to	produce	the
text	output,	but	the	problem	is	that	the	speech	wasn’t	able	to	be	entered	in	the
same	speed	and	pitch.	Since	everybody’s	input	voice	varies,	the	system	needed
to	be	powerful	enough	to	detect	the	right	words	independently.	That’s	when
people	started	sampling	different	voices.	Then	they	created	the	recurrent	neural
network.
Gaming
Activision-Blizzard,	Nintendo,	Sony,	Zynga,	and	EA	Sports	have	been	the
leaders	in	the	gaming	world	and	brought	it	to	the	next	level	through	data	science.
Games	are	now	being	created	by	using	machine	learning	algorithms	which	are
able	to	upgrade	and	improve	playing	as	the	player	moves	through	the	game.
When	you	are	playing	a	motion	game,	the	computer	analyzes	the	previous
moves	to	change	the	way	the	game	performs.
Players	interact	with	their	games	in	several	ways,	like	the	device	used,	in-game
purchases,	social	media	gaming	usage,	dedication	level,	playing	style,	and
amount	of	time	spent	playing.	The	huge	amount	of	gaming	styles,	along	with	the

popularity	of	subscription	and	in-game	revenue	opportunities,	means	that	all	of
the	gaming	companies	have	to	tailor	their	advertising	to	maximize	their	revenue.
Data	analytics	will	allow	these	companies	to	collect,	cleanse,	format,	and	model
the	data	so	that	they	can	get	a	clear	picture	of	the	way	their	users	interact	with
their	games.	With	time,	a	profile	for	their	players	will	emerge,	which	will	enable
companies	to	offer	highly-specific	products	based	upon	their	users	gameplays.
These	are	only	a	few	applications	for	data	science,	there	are	many,	many	more
out	there.

Conclusion
You	have	officially	made	through	this	comprehensive	guide	to	data	science.
There	was	a	lot	of	information	in	this	book,	and	I	hope	that	it	will	help	you	in	a
career	in	data	science.	The	best	way	to	proceed	is	to	read	back	through	this	book
and	practice	all	of	the	different	guides.	Focus	on	the	parts	that	you	find	more
difficult	until	they	are	no	longer	difficult.
The	goal	of	data	science	is	to	help	improve	the	decision-making	process	for
different	businesses,	which	is	done	by	basing	decisions	on	different	insights	that
has	been	extracted	from	large	sets	of	data.	Data	science	as	a	field	encompasses	a
certain	set	of	principles,	algorithms,	problem	definitions,	and	process	for	finding
useful	patterns	from	a	large	set	of	data.
Today,	the	decision-making	process	of	data	science	is	used	in	almost	every	area
of	modern	society.	Some	of	the	ways	that	data	science	could	affect	the	daily	life
of	humans	includes	figuring	out	which	ads	should	be	presented	online;	which
friend,	movie,	and	book	connections	you	are	shown;	which	emails	end	up	being
sent	to	your	spam	folder;	what	offers	you	end	up	getting	when	you	renew	cell
service;	how	much	your	health	insurance	premiums	cost	you;	the	timing	and
sequencing	of	traffic	lights;	how	the	drugs	you	could	take	were	designed;	and	the
locations	where	your	city’s	police	are	targeting.
The	growth	of	the	data	science	industry	across	society	has	been	driven	by	social
media	and	big	data,	the	quickening	of	computer	power,	the	huge	reduction	in
computer	memory	cost,	and	the	creation	of	powerful	methods	for	data	modeling
and	analysis.	All	of	these	factors	together	mean	that	it	hasn’t	ever	been	easier	for
businesses	to	process,	gather,	and	store	data.	Along	with	this,	innovations	and
the	bigger	applications	for	data	science	means	that	the	ethics	of	using	the	data
and	individual	privacy	is	an	even	bigger	problem.
When	it	comes	to	coding,	the	best	thing	you	can	do	is	code.	Try	out	all	of	the
different	coding	languages	and	get	familiar	with	them	all	just	in	case	you	have	to

use	them.	The	most	commonly	used	language	is	Python,	so	take	extra	care	in
learning	it.
As	you	have	probably	figured	out,	there	is	a	pretty	big	debate	over	which
programming	language	a	data	scientist	should	use,	especially	when	you	are	just
learning	about	data	science.	There	are	a	lot	of	people	who	think	that
programming	language	R	is	the	best,	which	is	wrong.	There	are	even	a	few	that
think	Scala	and	Java	are	the	best	and	they	are	also	wrong.	Python,	in	my	opinion,
is	the	obvious	best	option.
If	you’re	still	not	convinced,	let’s	review	some	of	the	best	features	of	Python	that
makes	it	the	best	for	learning	and	doing	data	science:

It	comes	with	a	bunch	of	data	science-related	libraries.
It	is	a	pretty	simple	code	to	learn	and	to	understand,	so	it	perfect	for
beginners.
It	is	completely	free	(you’re	sold,	I’m	sure.)

Python	may	not	be	the	favorite	programming	language	among	all	data	scientists,
but	it’s	the	best	to	start	with.	Data	scientists	could	see	other	programming
languages	as	more	pleasant,	better-designed,	or	more	fun	to	code	with,	and	yet
they	still	end	up	using	Python	when	they	start	a	new	data	science	project.
Similarly,	the	best	way	to	make	sure	that	you	understand	mathematics	is	by
practicing	math.	Data	science,	and	this	book	is	not	inherently	math	based	so	you
may	not	have	to	worry	about	“doing	math.”	That	said,	you	can’t	go	into	a	data
science	career	without	knowing	something	about	math,	especially	linear	algebra,
statistics,	and	probability.	This	means	that	in	the	areas	that	are	appropriate	you
need	to	really	dive	into	different	mathematical	equations,	mathematical	axioms,
and	mathematical	intuition.	Try	not	to	let	the	math	involved	scare	you	away	from
data	science	because	it	really	is	only	a	small	part	of	it.
While	math	and	statistics	may	seem	boring,	they	really	are	amazing	tools,
especially	when	it	comes	to	data	science.	Statistics	can	be	used	to	help	explain
things	from	the	idiocy	of	participating	in	the	lottery	to	DNA	testing.	Statistics
can	be	used	to	identify	the	factors	that	are	associated	with	things	like	heart

disease	and	cancer.	They	can	also	help	people	spot	cheating	on	standardized
tests.	Statistics	can	also	be	used	to	help	you	win	game	shows.
Besides	learning	the	information	found	in	this	book,	it’s	important	that	you
realize	the	future	of	data	science.	Jobs	in	data	science	have	grown	from	2.3
million	in	2015	to	2.9	million	in	2018.
The	combination	of	cheap	and	fast	computation	with	statistical	methods	has
allowed	for	lots	of	new	methods	such	as	machine	learning.	This	doesn’t	even
consider	the	cheaper	and	more	reliable	ways	we	have	to	store	data	today.	That
means	we’re	storing	even	more	of	it.	This	is	why	businesses	want	to	find
statisticians	who	can	code	or	programmers	that	understand	stats,	as	well	as	the
desire	for	new	tools	to	help	store	and	process	data.
While	the	tools	used	for	the	job	could	change	in	the	future,	the	need	for	these
types	of	people	isn’t	going	to	go	anywhere.	The	need	for	a	data	scientist	isn’t
going	anywhere.	While	Python	could	be	a	distant	memory	in	ten	year	(doubt	it)
that’s	just	how	programming	language	works.	Somebody	will	come	up	with
something	more	efficient,	and	the	data	scientist	will	have	to	learn	how	to	use	it.
In	the	future,	we	will	likely	see	new	sources	of	data.	While	the	most	common
datasets	normally	include	clickstream	data	or	sales	and	purchase	data,	more	data
scientists	will	start	asking	for	sensor-generated	data	from	vehicles,	retail
environment,	manufacturing	lines,	and	offices.
There	will	be	new	tools	that	will	make	this	work	easier	to	do.	This	can	be	seen
with	BI	tools	and	open	source	libraries	in	the	Python	and	R	communities.	There
are	now	algorithms,	which	you	would	have	had	to	code	from	scratch	ten	years
ago,	available	through	“from	sklearn.neighbors	import	LSHForest”.
Lastly,	we	will	see	quantitative	methods	and	data	science	become	more
distributed	throughout	several	roles	instead	of	only	being	concentrated	in	a
single	department	or	role.
I	hope	that	through	this	book	I	gave	you	a	sense	that	playing	around	with	data
can	be	fun	because	it	is	actually	fun.

About	the	author
Steven	Cooper	is	a	data	scientist	and	worked	as	a	software	engineer	at	multiple
startups.	Now	he	works	as	a	freelancer	and	helping	big	companies	in	their
marketing	and	statistical	analysis	using	machine	learning	and	deep	learning
techniques.
Steven	has	many	years	of	experience	with	coding	in	Python	and	has	given
several	seminars	on	the	practical	applications	of	data	science,	machine	learning,
and	deep	learning	over	the	years.	In	addition	he	delivers	training	and	coaching
services	that	help	technical	professionals	advance	their	careers.
He	loves	to	write	and	talk	about	data	science,	machine	learning,	and	Python,	and
he	is	very	motivated	to	help	people	developing	data-driven	solutions	without
necessarily	requiring	a	machine	learning	background.
When	not	writing	or	programming,	Steven	enjoys	spending	time	with	his
daughters	or	relaxing	at	the	lake	with	his	wife.

	

References
	
Flink
https://flink.apache.org/	-	this	is	the	main	website	for	Flink.
	
Hadoop
https://www.cloudera.com/downloads.html	-	these	are	great	intros	into	what
Hadoop	can	do.
	
http://hadoop.apache.org/	-	this	is	the	main	site	for	hadoop.
	
Java
https://www.codecademy.com/learn/learn-java	-	a	course	to	learn	how	to	use
Java.
	
Julia
https://julialang.org/	-	this	is	the	main	website	for	Julia.
	
Python
https://www.python.org/	-	this	is	the	main	website	for	Python.
	
R
https://www.pluralsight.com/search?q=R	–	this	is	an	interactive,	free,	and	short
introduction	to	R.
	
https://www.coursera.org/specializations/statistics	-	this	is	a	free	or	paid	online
course	that	will	teach	you	how	to	use	R	for	statistics.
	
https://www.r-project.org/	-	this	is	the	main	website	for	R.

	
Samza
http://samza.apache.org/	-	this	is	the	main	website	for	samza.
	
SAS
https://www.sas.com/en_us/home.html	-	this	is	the	main	website	for	SAS.
	
Scala
https://www.scala-lang.org/	-	this	is	the	main	website	for	Scala.
	
Spark
https://spark.apache.org/	-	this	is	the	main	website	for	spark.
	
SQL
https://www.codecademy.com/learn/learn-sql	-	this	is	a	course	to	teach	you	SQL.
	
Storm
http://storm.apache.org/	-	this	is	the	main	site	for	storm.
	
	

	Preface
	Introduction
	Data Science and its Importance
	What is it Exactly?
	Why It Matters

	What You Need
	The Advantages to Data Science
	Data Science and Big Data
	Key Difference Between Data Science and Big Data

	Data Scientists
	The Process of Data Science
	Responsibilities of a Data Scientist
	Qualifications of Data Scientists
	Would You Be a Good Data Scientist?

	The Importance of Hacking
	The Importance of Coding
	Writing Production-Level Code
	Python
	SQL
	R
	SAS
	Java
	Scala
	Julia

	How to Work with Data
	Data Cleaning and Munging
	Data Manipulation
	Data Rescaling

	Python
	Installing Python
	Python Libraries and Data Structures
	Conditional and Iteration Constructs
	Python Libraries
	Exploratory Analysis with Pandas
	Creating a Predictive Model

	Machine Learning and Analytics
	Linear Algebra
	Vectors
	Matrices

	Statistics
	Discrete Vs. Continuous
	Statistical Distributions
	PDFs and CDFs
	Testing Data Science Models and Accuracy Analysis
	Some Algorithms and Theorems

	Decision Trees
	Neural Networks
	Scalable Data Processing
	Batch Processing Systems
	Apache Hadoop
	Stream Processing Systems
	Apache Storm
	Apache Samza
	Hybrid Processing Systems
	Apache Spark
	Apache Flink

	Data Science Applications
	Conclusion
	About the author
	References

